There is considerable amount of data on arousal neurons whereas there is a paucity of knowledge regarding neurons that make us fall asleep. Indeed, current network models of sleep- wake regulation list many arousal neuronal populations compared to only one sleep group located in the preoptic area. There are neurons outside the preoptic area that are active during sleep, but they have never been selectively manipulated. Indeed, none of the sleep-active neurons have been selectively stimulated. To close this knowledge gap the proposed studies will use optogenetics to selectively manipulate neurons containing melanin concentrating hormone (MCH). The MCH neurons are located in the posterior hypothalamus intermingled with the orexin arousal neurons. Our very strong preliminary data indicate that optogenetic stimulation of MCH neurons excites sleep active neurons, decreases activity of wake active neurons and increases both non-REM sleep (NREM) and REM sleep (REMS) in wildtype mice (J Neuroscience, 2013), MCH-Cre mice and rats. MCH neuron stimulation increases sleep during the animal's normal active period, which is compelling evidence that stimulation of MCH neurons has a powerful effect in counteracting the strong arousal signal from all of the arousal neurons. Effects of MCH neuron stimulation versus inhibition will be tested in conditions that alter the animal's internal drive to stay awake (24h fasting) or sleep (6h sleep deprivation). In one aim, electrophysiology studies will monitor activity of sleep-active or wake-active neurons in the lateral hypothalamus, preoptic area and pons during normal sleep-wake cycles and during optogenetic stimulation, thereby identifying activity at the single neuron level during natural and optogenetically induced sleep. Neuroanatomy studies will show that MCH neurons project to multiple targets indicating powerful influence of these neurons in orchestrating shifts in vigilance states. The MCH neurons represent the only group of sleep-active neurons that when selectively stimulated induce sleep. From a translational perspective this is potentially useful in sleep disorders, such as insomnia, where sleep needs to be triggered against a strong arousal drive.
These aims will provide a framework for integrating the MCH neurons within an overall model of sleep-wake regulation.

Public Health Relevance

New pharmacological approaches for treating insomnia are needed. The challenge is to discover new phenotypes of neurons that can induce sleep. We have now ascertained that stimulation of MCH neurons robustly increases sleep. What is noteworthy about our results is that sleep was induced in spite of a strong circadian drive to stay awake indicating that MCH neurons are able to inhibit the combined signal of the arousal neurons. This is the first time that selective stimulation of sleep-active neurons has been shown to induce sleep. These results have a strong translational potential for sleep disorders, such as insomnia and jet lag, where sleep needs to be triggered against a strong waking drive.

Agency
National Institute of Health (NIH)
Type
Research Project (R01)
Project #
2R01NS052287-07A1
Application #
8824339
Study Section
Special Emphasis Panel (ZRG1)
Program Officer
He, Janet
Project Start
Project End
Budget Start
Budget End
Support Year
7
Fiscal Year
2014
Total Cost
Indirect Cost
Name
Medical University of South Carolina
Department
Psychiatry
Type
Schools of Medicine
DUNS #
City
Charleston
State
SC
Country
United States
Zip Code
29403
Pava, Matthew J; den Hartog, Carolina R; Blanco-Centurion, Carlos et al. (2014) Endocannabinoid modulation of cortical up-states and NREM sleep. PLoS One 9:e88672
Konadhode, Roda Rani; Pelluru, Dheeraj; Blanco-Centurion, Carlos et al. (2013) Optogenetic stimulation of MCH neurons increases sleep. J Neurosci 33:10257-63
Blanco-Centurion, Carlos; Liu, Meng; Konadhode, RodaRani et al. (2013) Effects of orexin gene transfer in the dorsolateral pons in orexin knockout mice. Sleep 36:31-40
Liu, Meng; Blanco-Centurion, Carlos; Konadhode, RodaRani et al. (2011) Orexin gene transfer into zona incerta neurons suppresses muscle paralysis in narcoleptic mice. J Neurosci 31:6028-40
Kaur, Satvinder; Thankachan, Stephen; Begum, Suraiya et al. (2009) Hypocretin-2 saporin lesions of the ventrolateral periaquaductal gray (vlPAG) increase REM sleep in hypocretin knockout mice. PLoS One 4:e6346
Thankachan, Stephen; Kaur, Satvinder; Shiromani, Priyattam J (2009) Activity of pontine neurons during sleep and cataplexy in hypocretin knock-out mice. J Neurosci 29:1580-5
Liu, Meng; Thankachan, Stephen; Kaur, Satvinder et al. (2008) Orexin (hypocretin) gene transfer diminishes narcoleptic sleep behavior in mice. Eur J Neurosci 28:1382-93
Murillo-Rodriguez, Eric; Liu, Meng; Blanco-Centurion, Carlos et al. (2008) Effects of hypocretin (orexin) neuronal loss on sleep and extracellular adenosine levels in the rat basal forebrain. Eur J Neurosci 28:1191-8
Kaur, Satvinder; Thankachan, Stephen; Begum, Suraiya et al. (2008) Entrainment of temperature and activity rhythms to restricted feeding in orexin knock out mice. Brain Res 1205:47-54
Blanco-Centurion, Carlos; Gerashchenko, Dmitry; Shiromani, Priyattam J (2007) Effects of saporin-induced lesions of three arousal populations on daily levels of sleep and wake. J Neurosci 27:14041-8

Showing the most recent 10 out of 13 publications