Whole brain irradiation (WBI) leads to progressive dementia in approximately 20-50% of brain tumor patients who survive long-term after treatment. At the present time, no strategies exist to prevent radiation- induced brain injury, and no additional treatments can reverse these effects. Our overall goal is to develop therapeutic interventions that ameliorate the effects of radiation-induced cognitive impairment. Our research studies are unique since we use clinically relevant, fractionated doses of WBI allowing us to make conclusions related to the etiology of cognitive dysfunction that occurs in response to WBI. During our first funding cycle, we found that radiation-induced cellular senescence is a potential mechanism that contributes to vascular and cognitive dysfunction and that bone marrow transplants can reverse radiation-induced cognitive impairment. We postulated that bone marrow transplants modify the cerebrovascular microenvironment, reducing the impact of cellular senescence and permit regulated cell proliferation. Our results are consistent with the results of previous studies investigating the effects of radiation on cellular senescence, but we have made important strides in incorporating these findings into the etiology of both cerebrovascular and cognitive dysfunction that occur after radiation therapy. These results have led to our current hypothesis that fractionated WBI induces a senescent phenotype that alters the cerebral microenvironment. Our work is novel in that we will be the first to demonstrate that radiation-induced cellular senescence is a unifying concept for the actions of radiation on the brain. This work will likely lead to the identification of target mechanisms for interventions thos are capable of restoring cognitive function. We will examine this hypothesis by the experiments proposed for the following specific aims: 1) Determine whether senescence and acquisition of a senescence-associated secretory phenotype (SASP) contribute to the impaired angiogenic response of cerebral microvessels;2) Determine whether whole brain radiation impairs cerebrovascular autoregulatory responses, impairs blood flow and/or disrupts blood-brain barrier function;3) Identify the mechanisms for the increase in vascular density and recovery of learning and memory after bone marrow transplantation. Our previous studies of radiation-induced cellular senescence in endothelial cells and the effects of bone marrow transplants that restore both vascular proliferation and cognitive function after WBI provide key support for our application.

Public Health Relevance

Patients with metastatic brain tumors who are treated with whole brain irradiation (WBI) often experience progressive dementia as a result of this treatment. At the present time, no strategies exist to prevent radiation- induced brain injury and no additional treatments can reverse these effects. Our goal is to understand how radiation damages the brain and to develop effective interventions to maintain learning and memory in these cancer survivors.

National Institute of Health (NIH)
National Institute of Neurological Disorders and Stroke (NINDS)
Research Project (R01)
Project #
Application #
Study Section
Acute Neural Injury and Epilepsy Study Section (ANIE)
Program Officer
Babcock, Debra J
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Oklahoma Health Sciences Center
Other Health Professions
Schools of Medicine
Oklahoma City
United States
Zip Code
Deak, Ferenc; Freeman, Willard M; Ungvari, Zoltan et al. (2016) Recent Developments in Understanding Brain Aging: Implications for Alzheimer's Disease and Vascular Cognitive Impairment. J Gerontol A Biol Sci Med Sci 71:13-20
Tarantini, Stefano; Giles, Cory B; Wren, Jonathan D et al. (2016) IGF-1 deficiency in a critical period early in life influences the vascular aging phenotype in mice by altering miRNA-mediated post-transcriptional gene regulation: implications for the developmental origins of health and disease hypothesis. Age (Dordr) 38:239-258
Tarantini, Stefano; Tucsek, Zsuzsanna; Valcarcel-Ares, M Noa et al. (2016) Circulating IGF-1 deficiency exacerbates hypertension-induced microvascular rarefaction in the mouse hippocampus and retrosplenial cortex: implications for cerebromicrovascular and brain aging. Age (Dordr) 38:273-289
Tarantini, Stefano; Hertelendy, Peter; Tucsek, Zsuzsanna et al. (2015) Pharmacologically-induced neurovascular uncoupling is associated with cognitive impairment in mice. J Cereb Blood Flow Metab 35:1871-81
Springo, Zsolt; Tarantini, Stefano; Toth, Peter et al. (2015) Aging Exacerbates Pressure-Induced Mitochondrial Oxidative Stress in Mouse Cerebral Arteries. J Gerontol A Biol Sci Med Sci 70:1355-9
Banki, Eszter; Sosnowska, Danuta; Tucsek, Zsuzsanna et al. (2015) Age-related decline of autocrine pituitary adenylate cyclase-activating polypeptide impairs angiogenic capacity of rat cerebromicrovascular endothelial cells. J Gerontol A Biol Sci Med Sci 70:665-74
Toth, Peter; Tarantini, Stefano; Springo, Zsolt et al. (2015) Aging exacerbates hypertension-induced cerebral microhemorrhages in mice: role of resveratrol treatment in vasoprotection. Aging Cell 14:400-8
Toth, Peter; Tarantini, Stefano; Davila, Antonio et al. (2015) Purinergic glio-endothelial coupling during neuronal activity: role of P2Y1 receptors and eNOS in functional hyperemia in the mouse somatosensory cortex. Am J Physiol Heart Circ Physiol 309:H1837-45
Ashpole, Nicole M; Sanders, Jessica E; Hodges, Erik L et al. (2015) Growth hormone, insulin-like growth factor-1 and the aging brain. Exp Gerontol 68:76-81
Toth, Peter; Tarantini, Stefano; Ashpole, Nicole M et al. (2015) IGF-1 deficiency impairs neurovascular coupling in mice: implications for cerebromicrovascular aging. Aging Cell 14:1034-44

Showing the most recent 10 out of 55 publications