Molecular chaperones, such as Hsp70 and Hsp90, may help protect against neurodegenerative disorders, such as Alzheimer's and Huntington's diseases, which are caused by aberrant protein misfolding. However, a dearth of small molecule partners for the chaperones have limited our ability to probe their function in models of these diseases. The long-term goal of the Gestwicki laboratory is to uncover inhibitors and agonists of the chaperones to open new opportunities for exploration in this area. The objective of this particular proposal is to identify and characterize agonists of Hsp70 and use these to study the role of this chaperone in polyglutamine expansion (polyQ) models of Huntington's disease. Our central hypothesis is that direct stimulation of Hsp70 will provide relief from polyQ misfolding. In preliminary studies, we have uncovered small molecules that promote Hsp70's function and protect yeast and mammalian cell models of disease. Moreover, we have used these chemical probes to implicate Hsp70 as a crucial mediator of aggregation. Guided by this strong preliminary evidence, we propose three specific aims: (1) Identify additional small molecules that modify Hsp70's chaperone activity (2) Explore the interaction between these compounds and Hsp70 (3) Use these chemical tools to investigate how Hsp70 protects against polyQ self-assembly. This approach is innovative because other strategies have relied on initiation of the global cellular stress responses to modulate Hsp70 function. In contrast, our approach directly targets the chaperone without perturbing other cellular processes. This is significant because our chemical probes might allow us to, for the first time, identify Hsp70 as a drug target for neurodegenerative disorders and learn more about its role in disease.

Public Health Relevance

Neurodegenerative disease is one of the greatest threats facing an aging population and the outlook for pharmaceutical intervention is uncertain. We have developed a new approach to discovery in this area by directly targeting molecular chaperones.

National Institute of Health (NIH)
National Institute of Neurological Disorders and Stroke (NINDS)
Research Project (R01)
Project #
Application #
Study Section
Macromolecular Structure and Function B Study Section (MSFB)
Program Officer
Sutherland, Margaret L
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Michigan Ann Arbor
Schools of Medicine
Ann Arbor
United States
Zip Code
Connarn, Jamie N; Assimon, Victoria A; Reed, Rebecca A et al. (2014) The molecular chaperone Hsp70 activates protein phosphatase 5 (PP5) by binding the tetratricopeptide repeat (TPR) domain. J Biol Chem 289:2908-17
Walter, Gladis M; Raveh, Avi; Mok, Sue-Ann et al. (2014) High-throughput screen of natural product extracts in a yeast model of polyglutamine proteotoxicity. Chem Biol Drug Des 83:440-9
Pratt, William B; Morishima, Yoshihiro; Gestwicki, Jason E et al. (2014) A model in which heat shock protein 90 targets protein-folding clefts: rationale for a new approach to neuroprotective treatment of protein folding diseases. Exp Biol Med (Maywood) 239:1405-13
Rauch, Jennifer N; Gestwicki, Jason E (2014) Binding of human nucleotide exchange factors to heat shock protein 70 (Hsp70) generates functionally distinct complexes in vitro. J Biol Chem 289:1402-14
Assimon, Victoria A; Gillies, Anne T; Rauch, Jennifer N et al. (2013) Hsp70 protein complexes as drug targets. Curr Pharm Des 19:404-17
Miyata, Yoshinari; Li, Xiaokai; Lee, Hsiu-Fang et al. (2013) Synthesis and initial evaluation of YM-08, a blood-brain barrier permeable derivative of the heat shock protein 70 (Hsp70) inhibitor MKT-077, which reduces tau levels. ACS Chem Neurosci 4:930-9
Cesa, Laura C; Patury, Srikanth; Komiyama, Tomoko et al. (2013) Inhibitors of difficult protein-protein interactions identified by high-throughput screening of multiprotein complexes. ACS Chem Biol 8:1988-97
Zuiderweg, Erik R P; Bertelsen, Eric B; Rousaki, Aikaterini et al. (2013) Allostery in the Hsp70 chaperone proteins. Top Curr Chem 328:99-153
Zuiderweg, Erik R P; Bagai, Ireena; Rossi, Paolo et al. (2013) EZ-ASSIGN, a program for exhaustive NMR chemical shift assignments of large proteins from complete or incomplete triple-resonance data. J Biomol NMR 57:179-91
Rauch, Jennifer N; Nie, Jing; Buchholz, Tonia J et al. (2013) Development of a capillary electrophoresis platform for identifying inhibitors of protein-protein interactions. Anal Chem 85:9824-31

Showing the most recent 10 out of 36 publications