The broad objective of this project is to analyze at the molecular level the regulatory mechanisms of altered RNA splicing that are controlled by the formation of pathological MBNL1 mega-complexes in myotonic dystrophy 1 (DM1) patient cells. The genetic defect in DM1 results in the production of mutant RNAs encoding expanded CUG tracts. Abnormally expanded CUG tracts have been shown to form aberrant mega-complexes that contain the alternative splice factor, MBNL1, within the nucleus. Several lines of evidence implicate the formation of these high molecular weight complexes in altered splicing of a subset of physiologically important RNAs and in the subsequent development of DM1 pathology in vivo. To determine the mechanism whereby formation of the MBNL1 mega-complexes alters the splice code in DM1 we propose to purify both normal MBNL1 complexes and the aberrant MBNL1 mega-complexes that develop in DM1 myoblasts. In complementary experiments the role of these complexes in dictating RNA splice site choice will be defined.
The Aims of this application are: 1. Purification and functional characterization of normal MBNL1 complexes in spliceosome assembly and RNA catalysis. 2. Purification of MBNL1 mega-complexes from DM1 myoblasts and definition of the mechanics of mega-complex formation in vivo. 3. Elucidation of the mechanisms by which formation of MBNL1 mega-complexes alters the splice code in DM1 myoblasts.

National Institute of Health (NIH)
National Institute of Neurological Disorders and Stroke (NINDS)
Research Project (R01)
Project #
Application #
Study Section
Skeletal Muscle and Exercise Physiology Study Section (SMEP)
Program Officer
Porter, John D
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Southern California
Schools of Medicine
Los Angeles
United States
Zip Code
Choi, Jongkyu; Dixon, Donald M; Dansithong, Warunee et al. (2016) Muscleblind-like 3 deficit results in a spectrum of age-associated pathologies observed in myotonic dystrophy. Sci Rep 6:30999
Dixon, Donald M; Choi, Jongkyu; El-Ghazali, Ayea et al. (2015) Loss of muscleblind-like 1 results in cardiac pathology and persistence of embryonic splice isoforms. Sci Rep 5:9042
Choi, Jongkyu; Personius, Kirkwood E; DiFranco, Marino et al. (2015) Muscleblind-Like 1 and Muscleblind-Like 3 Depletion Synergistically Enhances Myotonia by Altering Clc-1 RNA Translation. EBioMedicine 2:1034-47
Jog, Sonali P; Paul, Sharan; Dansithong, Warunee et al. (2012) RNA splicing is responsive to MBNL1 dose. PLoS One 7:e48825
Dansithong, Warunee; Jog, Sonali P; Paul, Sharan et al. (2011) RNA steady-state defects in myotonic dystrophy are linked to nuclear exclusion of SHARP. EMBO Rep 12:735-42
Paul, Sharan; Dansithong, Warunee; Jog, Sonali P et al. (2011) Expanded CUG repeats Dysregulate RNA splicing by altering the stoichiometry of the muscleblind 1 complex. J Biol Chem 286:38427-38
Dansithong, Warunee; Wolf, Cordula M; Sarkar, Partha et al. (2008) Cytoplasmic CUG RNA foci are insufficient to elicit key DM1 features. PLoS One 3:e3968