This proposal builds upon our successes in the first funding cycle, and technological advances in in the wider scientific community. We will expand our understanding of the biology and sequence-based encryption of transcriptional regulatory instructions in clinically pertinent neuronal populations, focusing on tyrosine hydroxylase (Th)-expressing ventral midbrain neurons that are compromised in Parkinson's disease and certain behavioral and neuropsychiatric disorders. In recent years, we have made great strides in characterizing regulatory control at specific neurogenic loci by generating, validating and publicly depositing huge catalogs of neuronal enhancers. We have developed and implemented computational strategies that catalog key motif combinations that identify neuronal enhancers, and developed sequence- based vocabularies (classifiers) for neuroanatomical domains (forebrain, midbrain, hindbrain) among other more homogenous isolated cell populations. By integrating our experiences in functional and computational genomics we have been able to indict several disease-associated variants in pertinent biological processes. We are also beginning to develop the capacity to impute the functional impact of non-coding variation from primary sequence alone. Efforts to understand the architecture of human complex disease through Genome Wide Association Studies have drawn increased attention to potential roles played by regulatory variation. Thus, understanding the connections between regulatory variants and disease risk is very important. We propose detailed characterization of cell-type appropriate genome-wide regulatory sequence catalogs, isolating labeled dopaminergic neurons ex vivo at multiple time points (Aim 1). We will functionally validate the catalogs and define the sequence motifs that specify their function, developing computational classifiers to identify human DA enhancers, and assaying the functional impact of disease-associated variants therein (Aim 2). We will determine the relationship between distal-acting regulatory sequences and their cognate genes using cutting edge chromatin conformation capture (3C)-based strategies to reveal enhancers- promoter interactions. Then we will determine the consequences of deleting selected enhancers using contemporary genome editing strategies (Aim 3). This proposal takes crucial next steps towards a neuronal regulatory lexicon that can inform our observation of disease-associated variation in non-coding, putative regulatory sequence space.

Public Health Relevance

We wish to better understand how the regulatory instructions are encoded in DNA sequence, telling critical genes when and where to be switched on/off. We will focus on neurons that are lost in disorders like Parkinson's disease, prioritizing the study o genes implicated in related disorders. Our work will provide new insight into the identity, composition and biological requirement for these gene switches, informing our understanding of mutations that contribute to common genetic disorders.

National Institute of Health (NIH)
National Institute of Neurological Disorders and Stroke (NINDS)
Research Project (R01)
Project #
Application #
Study Section
Molecular Neurogenetics Study Section (MNG)
Program Officer
Gwinn, Katrina
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Johns Hopkins University
Schools of Medicine
United States
Zip Code
Ghandi, Mahmoud; Mohammad-Noori, Morteza; Beer, Michael A (2014) Robust k-mer frequency estimation using gapped k-mers. J Math Biol 69:469-500
Fletez-Brant, Christopher; Lee, Dongwon; McCallion, Andrew S et al. (2013) kmer-SVM: a web server for identifying predictive regulatory sequence features in genomic data sets. Nucleic Acids Res 41:W544-56
Praetorius, Christian; Grill, Christine; Stacey, Simon N et al. (2013) A polymorphism in IRF4 affects human pigmentation through a tyrosinase-dependent MITF/TFAP2A pathway. Cell 155:1022-33
Pol, Suyog U; Lang, Jennifer K; O'Bara, Melanie A et al. (2013) Sox10-MCS5 enhancer dynamically tracks human oligodendrocyte progenitor fate. Exp Neurol 247:694-702
Burzynski, Grzegorz M; Reed, Xylena; Maragh, Samantha et al. (2013) Integration of genomic and functional approaches reveals enhancers at LMX1A and LMX1B. Mol Genet Genomics 288:579-89
Hodonsky, Chani J; Kleinbrink, Erica L; Charney, Kira N et al. (2012) SOX10 regulates expression of the SH3-domain kinase binding protein 1 (Sh3kbp1) locus in Schwann cells via an alternative promoter. Mol Cell Neurosci 49:85-96
Taher, Leila; McGaughey, David M; Maragh, Samantha et al. (2011) Genome-wide identification of conserved regulatory function in diverged sequences. Genome Res 21:1139-49
Lee, Dongwon; Karchin, Rachel; Beer, Michael A (2011) Discriminative prediction of mammalian enhancers from DNA sequence. Genome Res 21:2167-80
Stine, Zachary E; McGaughey, David M; Bessling, Seneca L et al. (2011) Steroid hormone modulation of RET through two estrogen responsive enhancers in breast cancer. Hum Mol Genet 20:3746-56
Prasad, Megana K; Reed, Xylena; Gorkin, David U et al. (2011) SOX10 directly modulates ERBB3 transcription via an intronic neural crest enhancer. BMC Dev Biol 11:40

Showing the most recent 10 out of 12 publications