Traumatic brain injury (TBI) has been a major cause of death and threat to optimal brain function throughout the entire history of human existence. Delayed secondary injury processes that could be reversed or prevented are important therapeutic targets for TBI. The focus of this project is on secondary injury processes involving the protein tau. Abnormal aggregations of tau have been detected hours to days after injury in the brains of many TBI patients. Tau may be involved in the early development of dementia similar to Alzheimer's disease, and tau is the hallmark of chronic traumatic encephalopathy seen in boxers, football players, and military personnel with TBIs. Importantly, an up-to-date definition of the spectrum of tau pathology now includes not only tau that is visible under the microscope, but also small clusters of tau called oligomers and aggregated forms of tau that can spread through the brain by triggering additional tau aggregation. However, the mechanisms underlying tau pathologies following TBI are not understood, in large part due to the lack until recently of an appropriate small animal model. To address this, we developed the first transgenic mouse model which recapitulates many aspects of tau pathology following experimental TBI. 1) For our first aim, we now propose to test the hypothesis that tau oligomers and spreading tau aggregation contribute to delayed brain degeneration following TBI. These studies will be performed in collaboration with Dr. Rakez Kayed at the University of Texas, Galveston and Dr. Marc Diamond at Washington University, two researchers working at the cutting edge of tau biology. 2) Intriguingly, treatment with an inhibitor of an enzyme called c-jun N-terminal kinase (JNK) before injury reduced TBI-related tau pathology in the brain. For our second aim, we propose to test whether treatment with a JNK inhibitor at therapeutically realistic times after injury blocks tau pathology and improves outcomes in mice. We will assess both short term and longer-term pathological and behavioral outcomes, including innovative tests of social behavior and mood regulation in mice. 3) There are three types of JNK in the brain called JNK1, JNK2 and JNK3. Mice without JNK1 or JNK2 have problems with immune system function whereas mice without JNK3 are actually protected from other types of brain insults. Our hypothesis is that JNK3 is playing a key role and that JNK3 would make a better and safer target for new therapeutics than nonselective JNK inhibitors. We propose for our third aim to create antisense oligonucleotides specifically targeting each type of JNK. We will treat mice with these antisense oligonucleotides and determine whether this reduces tau pathology and improves outcomes following TBI. These antisense oligonucleotides have the potential to be used in human TBI patients, as there are two antisense therapeutics already approved and approximately 35 more in various stages of human clinical trials. Our collaborators, Dr. T.M. Miller at Washington University and Dr. Eric Swayze of Isis Pharmaceuticals are among the world's experts in antisense treatments. The broad, long term goals are to uncover the mechanisms leading to secondary injury processes involving tau and develop therapeutics to block them, with the hope that this would improve outcomes following TBI. The worldwide interest in athletes and military personnel with tau pathology and chronic traumatic encephalopathy underscores the urgency of this line of investigation.

Public Health Relevance

of this project is that if successful, it will result in a deeper understanding of the mechanisms underlying important aspects of the pathology of traumatic brain injury. A deep understanding of these mechanisms may allow development of new treatments to prevent long-term problems such as chronic traumatic encephalopathy and dementia following traumatic brain injury.

National Institute of Health (NIH)
National Institute of Neurological Disorders and Stroke (NINDS)
Research Project (R01)
Project #
Application #
Study Section
Brain Injury and Neurovascular Pathologies Study Section (BINP)
Program Officer
Hicks, Ramona R
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Washington University
Schools of Medicine
Saint Louis
United States
Zip Code
Bennett, Rachel E; Brody, David L (2014) Acute reduction of microglia does not alter axonal injury in a mouse model of repetitive concussive traumatic brain injury. J Neurotrauma 31:1647-63
Esparza, Thomas J; Zhao, Hanzhi; Cirrito, John R et al. (2013) Amyloid-* oligomerization in Alzheimer dementia versus high-pathology controls. Ann Neurol 73:104-19
Klemenhagen, Kristen C; O'Brien, Scott P; Brody, David L (2013) Repetitive concussive traumatic brain injury interacts with post-injury foot shock stress to worsen social and depression-like behavior in mice. PLoS One 8:e74510
Bennett, Rachel E; Esparza, Thomas J; Lewis, Hal A et al. (2013) Human apolipoprotein E4 worsens acute axonal pathology but not amyloid-? immunoreactivity after traumatic brain injury in 3xTG-AD mice. J Neuropathol Exp Neurol 72:396-403
Bennett, Rachel E; Mac Donald, Christine L; Brody, David L (2012) Diffusion tensor imaging detects axonal injury in a mouse model of repetitive closed-skull traumatic brain injury. Neurosci Lett 513:160-5
Magnoni, Sandra; Esparza, Thomas J; Conte, Valeria et al. (2012) Tau elevations in the brain extracellular space correlate with reduced amyloid-ýý levels and predict adverse clinical outcomes after severe traumatic brain injury. Brain 135:1268-80
Tran, Hien T; Sanchez, Laura; Brody, David L (2012) Inhibition of JNK by a peptide inhibitor reduces traumatic brain injury-induced tauopathy in transgenic mice. J Neuropathol Exp Neurol 71:116-29
Tran, Hien T; Sanchez, Laura; Esparza, Thomas J et al. (2011) Distinct temporal and anatomical distributions of amyloid-* and tau abnormalities following controlled cortical impact in transgenic mice. PLoS One 6:e25475
Tran, Hien T; LaFerla, Frank M; Holtzman, David M et al. (2011) Controlled cortical impact traumatic brain injury in 3xTg-AD mice causes acute intra-axonal amyloid-ýý accumulation and independently accelerates the development of tau abnormalities. J Neurosci 31:9513-25
Shitaka, Yoshitsugu; Tran, Hien T; Bennett, Rachel E et al. (2011) Repetitive closed-skull traumatic brain injury in mice causes persistent multifocal axonal injury and microglial reactivity. J Neuropathol Exp Neurol 70:551-67