The challenge of the BRAIN Initiative and the European Human Brain Project is to determine how the billions of neurons and trillions of synapses in the human brain organize themselves into neural circuits that enable brain function. Yet the anatomical organization of neural circuits is not sufficient to understand information processing, since it is well known that neuromodulators that act outside of synapses can reconfigure patterns of neural activation by recruiting or rejecting the involvement of specific circuit components. Dynamically changing the spatial pattern of neural activation may be particularly important in the cerebellar cortex, where the precise spatial-temporal patterns of Purkinje cell (PC) activation are critical for the complex sensory-integration function of motor control. The pattern of Purkinje cell activation is controlled by olivocerebellar climbing fibers (CFs) that form powerful one-to-one glutamatergic synapses with single PCs. CFs generate a complex spike in postsynaptic PCs as well as a pause in PC simple spiking. However, CFs can also control the excitability of neighboring PCs through the activation of inhibitory interneurons. Surprisingly, CF-interneuron signaling occurs via spillover transmission in the absence of anatomically defined synaptic structures. The goal of this proposal is to determine how glutamate spillover from CFs influences cerebellar circuit function at the level of single cells, small microcircuits and cerebellar compartments. We hypothesize that CF spillover organizes the temporal-spatial pattern of neural activity at each level to expand the influence of CFs beyond the targeted PC. We will use a variety of electrophysiological, imaging and transgenic approaches to test predictions about the role of CF glutamate spillover in the spatial organization of cerebellar circuit activity. Successful completion of the proposed Aims has the potential to dramatically shift the current view of the role of CFs in cerebellar function. The conceptual novelty of this proposal stems from the demonstration that fast extrasynaptic glutamate signaling does not require morphologically-defined synapses and provides a mechanism to mediate patterned of neural activation that is regulated by spatial proximity rather than synaptic connectivity. The significance of the proposed experiments is supported by several in vivo observations suggesting that this unconventional mode of transmission from CFs contributes to the temporal- spatial pattern of PC activity in a manner that is critical for cerebellar function. Cerebellar dysfunction can lead to many human diseases involving motor control, including a family of nearly 40 conditions known as the spinocerebellar ataxias.The cerebellum is also involved in executive functions, spatial learning and memory, and emotion as well as more recently being associated with schizophrenia and autism. A more complete understanding of cerebellar circuit information processing will thus benefit a wide range of basic and clinical fields.

Public Health Relevance

Normal function of the cerebellum relies on appropriate spatial-temporal patterns of neural activity of Purkinje cells, the sole output neurons. The goal of this project is to determine how glutamate spillover from climbing fibers contributes to the spatial-temporal dynamics of Purkinje cell excitability. Completion of this project will provide insight into the mechanisms that control patterned neural activity in the cerebellar circuit as well as how synaptic signaling outside of anatomically defined circuits can contribute to normal brain function.

Agency
National Institute of Health (NIH)
Type
Research Project (R01)
Project #
2R01NS065920-06
Application #
8759425
Study Section
Sensorimotor Integration Study Section (SMI)
Program Officer
Talley, Edmund M
Project Start
Project End
Budget Start
Budget End
Support Year
6
Fiscal Year
2014
Total Cost
Indirect Cost
Name
University of Alabama Birmingham
Department
Neurosciences
Type
Schools of Medicine
DUNS #
City
Birmingham
State
AL
Country
United States
Zip Code
35294
Chancey, Jessica H; Poulsen, David J; Wadiche, Jacques I et al. (2014) Hilar mossy cells provide the first glutamatergic synapses to adult-born dentate granule cells. J Neurosci 34:2349-54
Overstreet-Wadiche, Linda; Wadiche, Jacques I (2014) Good housekeeping. Neuron 81:715-7
Coddington, Luke T; Nietz, Angela K; Wadiche, Jacques I (2014) The contribution of extrasynaptic signaling to cerebellar information processing. Cerebellum 13:513-20
Coddington, Luke T; Rudolph, Stephanie; Vande Lune, Patrick et al. (2013) Spillover-mediated feedforward inhibition functionally segregates interneuron activity. Neuron 78:1050-62
Chancey, Jessica H; Adlaf, Elena W; Sapp, Matthew C et al. (2013) GABA depolarization is required for experience-dependent synapse unsilencing in adult-born neurons. J Neurosci 33:6614-22
Tsai, Ming-Chi; Tanaka, Kohichi; Overstreet-Wadiche, Linda et al. (2012) Neuronal glutamate transporters regulate glial excitatory transmission. J Neurosci 32:1528-35
Rudolph, Stephanie; Overstreet-Wadiche, Linda; Wadiche, Jacques I (2011) Desynchronization of multivesicular release enhances Purkinje cell output. Neuron 70:991-1004