One of the key goals in many clinical interventions is to be able to modulate brain's activity as needed. In some circumstances such as neurodegenerative diseases, one often aims to enhance the brain activity. In other cases such as epileptic seizure, one wishes to decrease the brain activity. Existing approaches include surgical procedures, transcranial stimulation, and pharmacological treatment. However, these approaches have their respective limitations. It would be of great interest to develop a non-invasive, convenient and cost- effective means to modulate brain activity. The overarching goal of the present project is to establish that control of the inspired air can be used as a simple maneuver to modulate brain activity in a quantitative manner. We will used several advanced Magnetic Resonance Imaging (MRI) techniques (some developed by the Principal Investigator) to study the effects of CO2 and O2 inspiration on neural activity and metabolism. As a proof-of-principle for potential clinical utility, we will also test whether 5% CO2 inhalation can reduce seizure activities in patients with epilepsy.
The specific aims of the proposal are: 1: To compare cerebral metabolic rate of oxygen, CMRO2, between normocapnia and graded hypercapnia conditions. 2a. To investigate CO2- induced changes in brain's arousal state using electroencephalography (EEG). 2b. To investigate CO2- induced changes in spontaneous brain activity at rest, as assessed by cross-correlation coefficient (cc) in functional connectivity MRI (fcMRI). 3. To measure CMRO2 and spontaneous brain activity under different levels of O2-breathing conditions. 4. To compare the extent of epileptic seizure activity during normocapnia and hypercapnia states in a patient group. Understanding how the inspired gas content changes neural activity will provide a better understanding of neural and metabolic regulation in the brain, improve the interpretation of several functional brain mapping techniques, and may also lay a foundation for exploring gas-based intervention in epilepsy when conventional drugs are not effective.

Public Health Relevance

Clinical interventions of brain diseases often require the ability to change brain's activity as needed. In this project, a new approach to change brain activity will be tested in which the content of the inspired air is modulated. This approach is non-invasive, convenient and cost effective, thus may provide a new means for interventions such as seizure termination in epilepsy patients.

National Institute of Health (NIH)
National Institute of Neurological Disorders and Stroke (NINDS)
Research Project (R01)
Project #
Application #
Study Section
Medical Imaging Study Section (MEDI)
Program Officer
Ludwig, Kip A
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Texas Sw Medical Center Dallas
Internal Medicine/Medicine
Schools of Medicine
United States
Zip Code
Liu, Peiying; Chalak, Lina F; Lu, Hanzhang (2014) Non-invasive assessment of neonatal brain oxygen metabolism: A review of newly available techniques. Early Hum Dev 90:695-701
Liu, Peiying; Huang, Hao; Rollins, Nancy et al. (2014) Quantitative assessment of global cerebral metabolic rate of oxygen (CMRO2) in neonates using MRI. NMR Biomed 27:332-40
Marshall, Olga; Lu, Hanzhang; Brisset, Jean-Christophe et al. (2014) Impaired cerebrovascular reactivity in multiple sclerosis. JAMA Neurol 71:1275-81
Liu, Peiying; Lu, Hanzhang; Filbey, Francesca M et al. (2014) MRI assessment of cerebral oxygen metabolism in cocaine-addicted individuals: hypoactivity and dose dependence. NMR Biomed 27:726-32
Miao, Xinyuan; Gu, Hong; Yan, Lirong et al. (2014) Detecting resting-state brain activity by spontaneous cerebral blood volume fluctuations using whole brain vascular space occupancy imaging. Neuroimage 84:575-84
Liu, Peiying; Lu, Hanzhang; Filbey, Francesca M et al. (2014) Automatic and reproducible positioning of phase-contrast MRI for the quantification of global cerebral blood flow. PLoS One 9:e95721
Peng, Shin-Lei; Dumas, Julie A; Park, Denise C et al. (2014) Age-related increase of resting metabolic rate in the human brain. Neuroimage 98:176-83
Pascual, Juan M; Liu, Peiying; Mao, Deng et al. (2014) Triheptanoin for glucose transporter type I deficiency (G1D): modulation of human ictogenesis, cerebral metabolic rate, and cognitive indices by a food supplement. JAMA Neurol 71:1255-65
Thomas, Binu P; Liu, Peiying; Park, Denise C et al. (2014) Cerebrovascular reactivity in the brain white matter: magnitude, temporal characteristics, and age effects. J Cereb Blood Flow Metab 34:242-7
Thomas, Binu P; Liu, Peiying; Aslan, Sina et al. (2013) Physiologic underpinnings of negative BOLD cerebrovascular reactivity in brain ventricles. Neuroimage 83:505-12

Showing the most recent 10 out of 22 publications