Glioblastoma multiforme (GBM), the most common and devastating intracranial malignant tumor accounts for 20% of all primary brain tumors and has a median survival rate of only 14 months. Cancer cells often disseminate far from primary tumors and individual glioma cells migrate from the gross tumor into the surrounding parenchyma, making complete surgical resection nearly impossible. This migratory capacity of malignant gliomas represents the greatest challenge to any potential therapy in spite of advances in surgery, chemotherapy and radiotherapy and growth of the remaining invasive cells leads to a recurrence incidence of 99%. What exactly regulates the migratory capacity of brain tumor cells is not fully understood and need to be studied. The main goal of this proposal is to understand the link between known pro- migratory signals such as epidermal growth factor (EGF) and Slit proteins with cell volume regulation. EGF and Slit proteins may play an important role in the modulation of invasive and migratory ability of GBM derived stem cells through Akt pathway that in turn regulates the activation of ion cotransport NKCC1. We propose to study invasive patterns and cell volume changes resulting in the extension of a leading process of a migrating cell, using various cell migration assays and measuring intracellular anion concentration. The results obtained from this work will help us understand the downstream signaling pathways involved in the activation of cascade mechanism responsible for brain tumor cell migration. Further, such knowledge will undoubtedly result in better therapeutic alternatives to current sub-optimal treatments for this devastating disease.

Public Health Relevance

Glioblastoma multiforme (GBM) is the most common and devastating primary malignant tumor. Our project aims to study the migration of GBM-derived Brain Tumor Stem Cells (BTSCs). BTSCs are thought to be responsible for maintaining the bulk of the tumor and to induce recurrence after surgical resection, nevertheless the molecular mechanisms that regulate their migration are not known. In this study, we propose to understand the role of pro-migratory signals in brain tumor invasion in order to increase the available targets to prevent brain tumor dispersal.

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Research Project (R01)
Project #
5R01NS070024-03
Application #
8257549
Study Section
Tumor Progression and Metastasis Study Section (TPM)
Program Officer
Fountain, Jane W
Project Start
2010-06-15
Project End
2015-02-28
Budget Start
2012-03-01
Budget End
2013-02-28
Support Year
3
Fiscal Year
2012
Total Cost
$447,623
Indirect Cost
$162,124
Name
Johns Hopkins University
Department
Neurology
Type
Schools of Medicine
DUNS #
001910777
City
Baltimore
State
MD
Country
United States
Zip Code
21218
Achanta, Pragathi; Steranka, Jared P; Tang, Zuojian et al. (2016) Somatic retrotransposition is infrequent in glioblastomas. Mob DNA 7:22
Ravin, Rea; Blank, Paul S; Busse, Brad et al. (2016) Blast shockwaves propagate Ca(2+) activity via purinergic astrocyte networks in human central nervous system cells. Sci Rep 6:25713
Tilghman, Jessica; Schiapparelli, Paula; Lal, Bachuchu et al. (2016) Regulation of Glioblastoma Tumor-Propagating Cells by the Integrin Partner Tetraspanin CD151. Neoplasia 18:185-98
Capilla-Gonzalez, Vivian; Bonsu, Janice M; Redmond, Kristin J et al. (2016) Implications of irradiating the subventricular zone stem cell niche. Stem Cell Res 16:387-96
Binder, Zev A; Wilson, Kelli M; Salmasi, Vafi et al. (2016) Establishment and Biological Characterization of a Panel of Glioblastoma Multiforme (GBM) and GBM Variant Oncosphere Cell Lines. PLoS One 11:e0150271
Su, Hao; Zhang, Pengcheng; Cheetham, Andrew G et al. (2016) Supramolecular Crafting of Self-Assembling Camptothecin Prodrugs with Enhanced Efficacy against Primary Cancer Cells. Theranostics 6:1065-74
Lopez-Bertoni, H; Lal, B; Li, A et al. (2015) DNMT-dependent suppression of microRNA regulates the induction of GBM tumor-propagating phenotype by Oct4 and Sox2. Oncogene 34:3994-4004
Zhu, Mingxin; Feng, Yun; Dangelmajer, Sean et al. (2015) Human cerebrospinal fluid regulates proliferation and migration of stem cells through insulin-like growth factor-1. Stem Cells Dev 24:160-71
Mathioudakis, Nestoras; Sundaresh, Ram; Larsen, Alexandra et al. (2015) Expression of the pituitary stem/progenitor marker GFRα2 in human pituitary adenomas and normal pituitary. Pituitary 18:31-41
Almeida, Joao Paulo; Chaichana, Kaisorn L; Rincon-Torroella, Jordina et al. (2015) The value of extent of resection of glioblastomas: clinical evidence and current approach. Curr Neurol Neurosci Rep 15:517

Showing the most recent 10 out of 52 publications