It has been known for decades that there is a co-morbidity of depression in epilepsy and recently, depression has been identified as a risk factor for epilepsy, highlighting the overlap in the pathophysiology of these diseases. However, very few studies have addressed the mechanisms mediating the co-morbidity of depression and epilepsy. Stress is a trigger for both of these disorders, and we hypothesize that dysfunction in the body's stress response, mediated by the hypothalamic-pituitary-adrenal (HPA) axis, and may play a role in the co-morbidity of depression and epilepsy. A hallmark characteristic of depression is hyperexcitability of the HPA axis and seizure activity activates the HPA axis. The output of the HPA axis is mediated by corticotrophin-releasing hormone (CRH) neurons in the paraventricular nucleus (PVN), the activity of which are under robust GABAergic control. This proposal will test the hypothesis that dysfunction in GABAergic control of the HPA axis results in hyperexcitability of the HPA axis, leading to increased seizure susceptibility. We have developed a sophisticated set of tools to test this hypothesis, including a novel, conditional knockout of one of the principal GABAARs regulating the HPA axis, the Gabrd gene. We intend to cross these mice with CRH-Cre mice to generate mice with GABAergic deficits specifically in the CRH neurons regulating the output of the HPA axis. Further, we will investigate whether an initial seizure insult alters GABAAR subunit expression in the PVN, as it does in other brain regions, thereby leading to HPA axis hyperexcitability and future seizures. Insight into the role of GABAergic control of the HPA axis in the co-morbidity of epilepsy and depression may identify novel therapeutic targets for both epilepsy and depression as well as the co-morbidity of the two, which complements the mission of the NINDS to reduce the burden of neurological diseases through research and the new strategic plan to identify new potential therapies for neurological diseases.

Public Health Relevance

Insight into mechanisms underlying the significant co-morbidity of epilepsy and depression will have therapeutic potential for both of these disorders as well as the co-morbidity of the two. The body's stress response, which is under the control of the major inhibitory neurotransmitter, GABA, has been implicated in the pathophysiology of these two diseases separately and we hypothesize may be involved in the co-morbidity. We have developed a unique mouse model, which is deficient in the GABAergic regulation of the stress response, to investigate the impact on the co-morbidity of depression and epilepsy.

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Research Project (R01)
Project #
5R01NS073574-02
Application #
8241640
Study Section
Clinical Neuroplasticity and Neurotransmitters Study Section (CNNT)
Program Officer
Fureman, Brandy E
Project Start
2011-03-15
Project End
2016-02-28
Budget Start
2012-03-01
Budget End
2013-02-28
Support Year
2
Fiscal Year
2012
Total Cost
$324,844
Indirect Cost
$127,969
Name
Tufts University
Department
Neurosciences
Type
Schools of Medicine
DUNS #
039318308
City
Boston
State
MA
Country
United States
Zip Code
02111
Sivakumaran, Sudhir; Maguire, Jamie (2016) Bumetanide reduces seizure progression and the development of pharmacoresistant status epilepticus. Epilepsia 57:222-32
Camille Melón, Laverne; Maguire, Jamie (2016) GABAergic regulation of the HPA and HPG axes and the impact of stress on reproductive function. J Steroid Biochem Mol Biol 160:196-203
MacKenzie, Georgina; O'Toole, Kate K; Moss, Stephen J et al. (2016) Compromised GABAergic inhibition contributes to tumor-associated epilepsy. Epilepsy Res 126:185-96
Hooper, Andrew; Maguire, Jamie (2016) Characterization of a novel subtype of hippocampal interneurons that express corticotropin-releasing hormone. Hippocampus 26:41-53
Lee, Vallent; MacKenzie, Georgina; Hooper, Andrew et al. (2016) Reduced tonic inhibition in the dentate gyrus contributes to chronic stress-induced impairments in learning and memory. Hippocampus 26:1276-90
Vien, Thuy N; Modgil, Amit; Abramian, Armen M et al. (2015) Compromising the phosphodependent regulation of the GABAAR β3 subunit reproduces the core phenotypes of autism spectrum disorders. Proc Natl Acad Sci U S A 112:14805-10
Moseley, Brian D; Dewar, Sandra; Haneef, Zulfi et al. (2015) How long is long enough? The utility of prolonged inpatient video EEG monitoring. Epilepsy Res 109:9-12
MacKenzie, Georgina; Maguire, Jamie (2015) Chronic stress shifts the GABA reversal potential in the hippocampus and increases seizure susceptibility. Epilepsy Res 109:13-27
Andresen, Lauren; Hampton, David; Taylor-Weiner, Amaro et al. (2014) Gabapentin attenuates hyperexcitability in the freeze-lesion model of developmental cortical malformation. Neurobiol Dis 71:305-16
Lee, Vallent; Maguire, Jamie (2014) The impact of tonic GABAA receptor-mediated inhibition on neuronal excitability varies across brain region and cell type. Front Neural Circuits 8:3

Showing the most recent 10 out of 18 publications