The injured spinal cord is now recognized to have a robust capacity for neuroplasticity, and it is desirable to therapeutically harness that in ways tht will enhance respiratory outcomes after cervical spinal cord injury (SCI). Fundamental to rehabilitation and repair approaches is a basic understanding of the spinal respiratory circuit and the control of spinal respiratory neurons after chronic SCI. In principle, the injured spinal cord s essentially a "new spinal cord" in which neural networks and control mechanisms affecting virtually every functional domain are significantly altered. Our group recently characterized the spinal respiratory circuit anatomically after cervical SCI, but functional-anatomical correlates remain to be determined. We propose a series of experiments which will neurophysiologically define the spinal respiratory circuit after cervical SCI, examine the influence of a key neuromodulator - serotonin (5-HT) - on the circuit, and determine the impact of a promising spinal cord transplantation approach on spinal respiratory neurons and recovery of ventilation after cervical SCI. The overall hypothesis guiding this proposal is that the regulation of phrenic motoneuron (PMN) activity following chronic cervical SCI is influenced by spinal pre-phrenic interneurons and that spinal 5-HT is a critically important modulator of the spinal respiratory circuitry following chronic SCI. A rat model of high cervical SCI (lateral C2 hemisection) will be used to address three specific aims.
Aim 1 will test the hypothesis that following chronic cervical SCI, PMNs retain a robust capacity for plasticity, and their bursting patterns are partly regulated by cervical interneurons. PMN and cervical interneuron activity will be measured using a multi- electrode array;anatomical and immunohistochemical methods will be used to evaluate the spinal respiratory circuit.
Aim 2 will use neurophysiological, pharmacological, immunochemical, and molecular techniques to test the hypothesis that spinal 5-HT receptor activation is an integral part of phrenic motor recovery after chronic cervical SCI. Lastly, Aim 3 will test the hypothesis that transplantation of serotonergic cells can enhance or restore serotonergic modulation of spinal respiratory neurons thereby improving respiratory recovery after SCI. One week following C2 hemisection injury, adult rats will receive an intraspinal transplant of serotonergic cells derived from fetal rat raph? neurons. The impact of the grafts on the phrenic motor system will be assessed using behavioral, neurophysiological, pharmacological, immunohistochemical, and molecular techniques. This proposal brings together a unique and synergistic combination of expertise in respiratory neurophysiology, multi-unit recording approaches, neural transplantation, and cervical SCI modeling. Innovative aspects include: 1) the first descriptive and mechanistic studies of PMN burst patterns after chronic cervical SCI;2) the first neurophysiological studies of respiratory-related cervical interneurons after cervical SC;3) the use of multi- array electrodes to describe the spinal respiratory circuitry, and 4) the firs use of transplant strategies to enhance serotonergic innervation of the spinal respiratory circuit.

Public Health Relevance

The impact of cervical spinal cord injury on the neural control of spinal respiratory motoneurons - including the cells which control the diaphragm - is unclear. We propose a series of experiments to determine how chronic cervical spinal cord injury alters the neural regulation of respiratory motoneurons and interneurons in the spinal cord. The work will then transition to translationally relevant studies aimed at enhancing respiratory recovery by transplanting serotonergic cells into the injured spinal cord.

National Institute of Health (NIH)
Research Project (R01)
Project #
Application #
Study Section
Respiratory Integrative Biology and Translational Research Study Section (RIBT)
Program Officer
Jakeman, Lyn B
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Florida
Other Health Professions
Schools of Public Health
United States
Zip Code
Gill, L C; Ross, H H; Lee, K Z et al. (2014) Rapid diaphragm atrophy following cervical spinal cord hemisection. Respir Physiol Neurobiol 192:66-73
Lee, Kun-Ze; Lane, Michael A; Dougherty, Brendan J et al. (2014) Intraspinal transplantation and modulation of donor neuron electrophysiological activity. Exp Neurol 251:47-57
Tester, Nicole J; Fuller, David D; Fromm, Jason S et al. (2014) Long-term facilitation of ventilation in humans with chronic spinal cord injury. Am J Respir Crit Care Med 189:57-65
Sandhu, M S; Lee, K Z; Gonzalez-Rothi, E J et al. (2013) Repeated intravenous doxapram induces phrenic motor facilitation. Exp Neurol 250:108-15
Fuller, David D; Lee, Kun-Ze; Tester, Nicole J (2013) The impact of spinal cord injury on breathing during sleep. Respir Physiol Neurobiol 188:344-54
Powers, Scott K; Smuder, Ashley J; Fuller, David et al. (2013) CrossTalk proposal: Mechanical ventilation-induced diaphragm atrophy is primarily due to inactivity. J Physiol 591:5255-7
Lee, Kun-Ze; Dougherty, Brendan J; Sandhu, Milapjit S et al. (2013) Phrenic motoneuron discharge patterns following chronic cervical spinal cord injury. Exp Neurol 249:20-32