Diagnostic imaging of early stage breast cancer is essential for decreasing the death rate caused by cancer in the United States. Near-infrared (NIR) optical imaging using external fluorescence contrast agents is an emerging non-invasive modality that can become an important tool in the diagnosis of early-stage breast cancer and prognosis of the disease. To date, most of the work in fluorescence-enhanced optical tomographic imaging is carried out using: (i) small volume phantom or in-vivo animal models that lack clinically relevant depth information;(ii) non-flexible optical probes that are restricted to image only specific tissue volumes or shapes;or (iii) measurement geometries that interrogate limited tissue volumes. In the current application, we propose to develop a hand-held optical fiber probe (~ 2"""""""" diameter) to perform fluorescence imaging of breast cancer using large tissue phantoms and in-vitro tissue models. The hand- held optical probe will be unique in terms of its: (i) flexibility to image any tissue shape and volume;(ii) non- compressibility, portability, and patient comfort due to its hand-held based design;and (iii) novel measurement geometry that can interrogate greater tissue volumes with reduced imaging time. The developmental aims are to: (i) design and construction of a hand-held optical with optimal fiber configuration for simultaneous NIR light illumination and collection measurement geometry;(ii) develop and optimize a rapid data acquiring frequency-domain intensified charge coupled device (ICCD) detection system;(iii) perform fluorescence-enhanced absorption imaging studies using tissue-mimicking phantoms and in-vitro tissue samples and assess the precision and accuracy of the fluorescence measurements;and (iv) integrate an undergraduate student with current research at various stages of the proposed work. The milestone of the proposed work is to develop a hand-held optical-based imagerthat is robust, rapid, flexible, non- compressible, comfortable, portable, and applicable for any given breast volume and shape, that is expected to render high-resolution diagnostic and prognostic breast cancer imaging in the clinic.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Academic Research Enhancement Awards (AREA) (R15)
Project #
Application #
Study Section
Medical Imaging Study Section (MEDI)
Program Officer
Baker, Houston
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Florida International University
Biomedical Engineering
Schools of Engineering
United States
Zip Code
Erickson-Bhatt, Sarah J; Roman, Manuela; Gonzalez, Jean et al. (2015) Noninvasive Surface Imaging of Breast Cancer in Humans using a Hand-held Optical Imager. Biomed Phys Eng Express 1:
Godavarty, Anuradha; Rao, P N Someshwara; Khandavilli, Yamini et al. (2015) Diabetic Wound Imaging Using a Noncontact Near-Infrared Scanner: A Pilot Study. J Diabetes Sci Technol 9:1158-9
Chaudhary, Ujwal; Hall, Michael; Gonzalez, Jean et al. (2014) Motor response investigation in individuals with cerebral palsy using near infrared spectroscopy: pilot study. Appl Opt 53:503-10
Erickson, Sarah J; Martinez, Sergio L; DeCerce, Joseph et al. (2013) Three-dimensional fluorescence tomography of human breast tissues in vivo using a hand-held optical imager. Phys Med Biol 58:1563-79
Roman, Manuela; Gonzalez, Jean; Carrasquilla, Jennifer et al. (2013) Resolution of a Gen-2 handheld optical imager: diffuse and fluorescence imaging studies. Appl Opt 52:8060-6
Gonzalez, Jean; Roman, Manuela; Hall, Michael et al. (2012) Gen-2 hand-held optical imager towards cancer imaging: reflectance and transillumination phantom studies. Sensors (Basel) 12:1885-97
Gonzalez, Jean; Decerce, Joseph; Erickson, Sarah J et al. (2012) Hand-held optical imager (Gen-2): improved instrumentation and target detectability. J Biomed Opt 17:081402-1
Erickson, Sarah J; Martinez, Sergio L; Gonzalez, Jean et al. (2010) Improved detection limits using a hand-held optical imager with coregistration capabilities. Biomed Opt Express 1:126-134
Ge, Jiajia; Erickson, Sarah J; Godavarty, Anuradha (2010) Multi-projection fluorescence optical tomography using a handheld-probe-based optical imager: phantom studies. Appl Opt 49:4343-54
Ge, Jiajia; Erickson, Sarah J; Godavarty, Anuradha (2009) Fluorescence tomographic imaging using a handheld-probe-based optical imager: extensive phantom studies. Appl Opt 48:6408-16

Showing the most recent 10 out of 11 publications