Single-walled carbon nanotubes (SWNTs) are being widely investigated as agents for the near infrared (NIR) - mediated thermal ablation of tumor cells because they efficiently convert absorbed NIR light into heat. Despite the therapeutic potential of SWNTs, there have been no published studies that correlate how many SWNTs need be associated with a cell to achieve a measured outcome of killing, or what is the most efficient subcellular distribution of SWNTs for killing cells. This is important information for the rational design and testing of strategies to eventually deliver an effective payload to tumor cells in vivo. The main reason for this knowledge gap has been the lack of methods for quantitatively assessing the amounts and subcellular location of SWNTs in cells. We have recently developed methods to extract and measure small amounts of cell-associated SWNTs and to directly image their distribution in cells by 3-dimensional confocal Raman microscopy. The overall objective of this proposal is to correlate NIR-mediated cell death with the quantity and location of cell-associated SWNTs in vitro and then carry this information to initial studies of a tumor model in mice.
Specific aim 1, to determine the efficacy of NIR-mediated ablation of target cells as a function of the amount of cell-associated SWNTs. The objective of specific aim 1 is to correlate the actual dose of cell-associated SWNTs with the extent of cell death, distinct from the usual LD50 curves that relate killing to the amount of drug in the medium or injected into the blood of an animal.
Specific aim 2, to determine the efficacy of NIR-mediated ablation of target cells as a function of the subcellular location of SWNTs. The objective of specific aim 2 is to generate data that correlates the effectiveness of NIR-mediated ablation with SWNT subcellular location, on the plasma membrane or within lysosomal vesicles.
Specific aim 3, pilot studies on ablation of human BT-474 tumors growing on NOD/SCID mice using anti-Her-2-MAb-SWNT constructs. The objective of this study is to learn whether the amount of SWNTs targeted to wither the plasma membrane or lysosomes impacts the extent of tumor cell ablation in an in vivo model of human tumors growing on mice. Together, the work in this proposal will provide insight into the influence of dose and subcellular location on the effectiveness of SWNTs in NIR-mediated cell ablation with in vitro and in vivo tumor models.

Public Health Relevance

Single-walled carbon nanotubes are a promising new material for cancer therapy because they have the ability to heat up and kill tumor cells when exposed to certain types of light. This proposal details quantitative studies to assess the effectiveness of single-walled carbon nanotubes as agents for the thermal destruction of tumor cells using in vitro and in vivo tumor models.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Academic Research Enhancement Awards (AREA) (R15)
Project #
1R15CA152917-01A1
Application #
8102668
Study Section
Radiation Therapeutics and Biology Study Section (RTB)
Program Officer
Wong, Rosemary S
Project Start
2011-03-01
Project End
2015-02-28
Budget Start
2011-03-01
Budget End
2015-02-28
Support Year
1
Fiscal Year
2011
Total Cost
$473,745
Indirect Cost
Name
University of Texas-Dallas
Department
Biology
Type
Schools of Arts and Sciences
DUNS #
800188161
City
Richardson
State
TX
Country
United States
Zip Code
75080
Wang, Ruhung; Lee, Michael; Kinghorn, Karina et al. (2018) Quantitation of cell-associated carbon nanotubes: selective binding and accumulation of carboxylated carbon nanotubes by macrophages. Nanotoxicology 12:677-698
Wang, Ruhung; Murali, Vasanth S; Draper, Rockford (2017) Detecting Sonolysis of Polyethylene Glycol Upon Functionalizing Carbon Nanotubes. Methods Mol Biol 1530:147-164
Murali, Vasanth S; Wang, Ruhung; Mikoryak, Carole A et al. (2016) The impact of subcellular location on the near infrared-mediated thermal ablation of cells by targeted carbon nanotubes. Nanotechnology 27:425102
Wang, Ruhung; N Meredith, Alicea; Lee Jr, Michael et al. (2016) Toxicity assessment and bioaccumulation in zebrafish embryos exposed to carbon nanotubes suspended in Pluronic® F-108. Nanotoxicology 10:689-98
Murali, Vasanth S; Wang, Ruhung; Mikoryak, Carole A et al. (2015) Rapid detection of polyethylene glycol sonolysis upon functionalization of carbon nanomaterials. Exp Biol Med (Maywood) 240:1147-51
Chilek, Jennifer L; Wang, Ruhung; Draper, Rockford K et al. (2014) Use of gel electrophoresis and Raman spectroscopy to characterize the effect of the electronic structure of single-walled carbon nanotubes on cellular uptake. Anal Chem 86:2882-7
Wang, Ruhung; Hughes, Tyler; Beck, Simon et al. (2013) Generation of toxic degradation products by sonication of Pluronic® dispersants: implications for nanotoxicity testing. Nanotoxicology 7:1272-81
Sheardy, Alex T; Taylor, Jeremy J; Chilek, Jennifer L et al. (2012) STUDY OF THE NEAR INFRARED-MEDIATED HEATING OF DISPERSIONS OF PROTEIN-COATED PRISTINE AND CARBOXYLATED SINGLE-WALLED CARBON NANOTUBES. Int J Nanosci 11: