Cell size varies greatly among different cell types and organisms, and especially during the reductive divisions that characterize early development. A fundamental question is how organelle size is appropriately regulated relative to cell size. The nucleus is one organelle that exhibits exquisite size scaling both during development and between species. The normal relationship between nuclear and cell size is often abrogated in cancers and other disease states, yet mechanisms that regulate nuclear size are largely unknown and may directly contribute to cancer progression. How steady-state nuclear size is determined is poorly understood. This knowledge gap prevents us from understanding how nuclear size impacts chromatin organization, gene expression, and cell function. The long-term goal is to elucidate mechanisms of nuclear size regulation to understand how nuclear size impacts cell and nuclear function and sub-nuclear organization. The objective of this application is to identify the molecular mechanisms that regulate nuclear expansion and shrinking and to demonstrate how these mechanisms control nuclear size in vivo. The central hypothesis is that steady-state nuclear size is determined by balanced nuclear growth and shrinking activities, which will be tested by pursuing the following three specific aims. 1) Identify mechanisms that regulate nuclear expansion: Nuclei reconstituted in egg extracts from two different size Xenopus frog species exhibit differential nuclear growth rates. Through biochemical characterization of these extracts and microscopy, the contribution of nuclear import cargos to interspecies differences in nuclear expansion will be demonstrated. 2) Identify mechanisms that regulate nuclear shrinking: Early stage Xenopus embryos contain larger cells and nuclei than later stage embryos, and large nuclei isolated from early stage embryos become smaller when incubated in cell extract from late stage embryos. Live time-lapse microscopy will be used to characterize the dynamics of this novel activity and biochemical approaches will identify factors responsible for nuclear shrinking. 3) Demonstrate the in vivo activities of nuclear scaling factors: Some factors that control nuclear size are known and others will be identified in Aims 1 and 2. Nuclear scaling activities will be manipulated in Xenopus embryos by mRNA microinjection and effects on nuclear size and dynamics in vivo will be examined by live cell microscopy. Nuclear scaling factors will also be genetically modulated in budding yeast to determine if their function is conserved. The expected outcome is elucidation of nuclear size control mechanisms, providing the foundation to test the novel hypothesis that nuclear size regulates nuclear organization and function. Organellar scaling is essential to cellular balance, yet mechanisms that maintain size ratios in a cell are largely unknown. This research will thus significantly impact our understanding of how scaling is regulated during biogenesis and growth.

Public Health Relevance

Nuclear size is often deregulated in cancer cells and many cancers are diagnosed and staged based on graded increases in nuclear size. Little is known about the causes or effects of nuclear morphology changes in cancer, so understanding factors and mechanisms of nuclear scaling and how nuclear size impacts cell function will shed light on the contribution of nuclear size to cancer development and progression. Novel approaches and targets for the diagnosis and treatment of cancer might be suggested, and new cancer susceptibility factors could be identified to aid in prevention.

National Institute of Health (NIH)
National Institute of General Medical Sciences (NIGMS)
Academic Research Enhancement Awards (AREA) (R15)
Project #
Application #
Study Section
Nuclear and Cytoplasmic Structure/Function and Dynamics Study Section (NCSD)
Program Officer
Ainsztein, Alexandra M
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Wyoming
Schools of Earth Sciences/Natur
United States
Zip Code
Mooney, Paul; Sulerud, Taylor; Pelletier, James F et al. (2017) Tau-based fluorescent protein fusions to visualize microtubules. Cytoskeleton (Hoboken) 74:221-232
Vukovi?, Lidija D; Jevti?, Predrag; Zhang, Zhaojie et al. (2016) Nuclear size is sensitive to NTF2 protein levels in a manner dependent on Ran binding. J Cell Sci 129:1115-27
Vukovi?, Lidija D; Jevti?, Predrag; Edens, Lisa J et al. (2016) New Insights into Mechanisms and Functions of Nuclear Size Regulation. Int Rev Cell Mol Biol 322:1-59
Jevti?, Predrag; Milunovi?-Jevti?, Ana; Dilsaver, Matthew R et al. (2016) Use of Xenopus cell-free extracts to study size regulation of subcellular structures. Int J Dev Biol 60:277-288
Mukherjee, Richik N; Chen, Pan; Levy, Daniel L (2016) Recent advances in understanding nuclear size and shape. Nucleus 7:167-86
Edens, Lisa J; Levy, Daniel L (2016) A Cell-Free Assay Using Xenopus laevis Embryo Extracts to Study Mechanisms of Nuclear Size Regulation. J Vis Exp :
Levy, Daniel L; Heald, Rebecca (2015) Biological Scaling Problems and Solutions in Amphibians. Cold Spring Harb Perspect Biol 8:a019166
Jevti?, Predrag; Levy, Daniel L (2015) Nuclear size scaling during Xenopus early development contributes to midblastula transition timing. Curr Biol 25:45-52
Jevti?, Predrag; Edens, Lisa J; Li, Xiaoyang et al. (2015) Concentration-dependent Effects of Nuclear Lamins on Nuclear Size in Xenopus and Mammalian Cells. J Biol Chem 290:27557-71
Jevti?, Predrag; Edens, Lisa J; Vukovi?, Lidija D et al. (2014) Sizing and shaping the nucleus: mechanisms and significance. Curr Opin Cell Biol 28:16-27

Showing the most recent 10 out of 11 publications