Traumatic brain injury (TBI) is a major national health problem. Every year at least 1.7 million people suffer from TBI in the USA. 52,000 civilians die due to the TBI-related injuries every year. Currently, initial assessment of TBI is based on either the response to stimuli/questions or the symptoms such as losses of consciousness and altered behaviors. The outcome of initial assessment will then be used to justify the need of neuroimaging with computed tomography (CT) scanning or magnetic resonance imaging (MRI). The current assessment techniques have low sensitivity and specificity for mild brain injuries. In addition, no in vitro diagnostic tool is commercially available to rapidly identify and differentiate between mid and severe concussions. There is a critical need to develop a point-of-care (POC) device to rapidly determine if brain injury has happened and its severity in an emergency department or in a clinic. The objective of the project is to develop a lateral-flow device based on surface enhanced Raman scattering (SERS) for multiplexed detection of TBI biomarkers in blood. The proposed device is able to measure three most recognized TBI biomarkers including S-100?, neuron-specific enolase (NSE) and glial fibrillary acidic protein (GFAP). In this lateral flow device, three SERS sensors are integrated with the microfluidic modules on a single chip, which enables the plasma separation from whole blood, transportation of sample and reagents, and sensing measurement. For the SERS sensors, a plasmonic nanostructure is developed by nanotechnology to enhance the sensitivity. The portable device can be used as a point-of-care (POC) device for directly measuring multiple TBI biomarkers in blood without the need of blood sample pretreatment in a centralized laboratory prior to biomarker detection. The device can provide the data for early TBI prognosis, and guide additional confirmatory testing. Hence, it is able to assist rapid screening of TBI patients in an emergency department or in a clinic. The data obtained by the device can also be used for guiding the TBI treatment. The proposed research lies at the interface of nanotechnology, materials science, biology and health science. The inherently interdisciplinary nature of this proposed project offers opportunities for training students in diverse research areas.

Public Health Relevance

A portable sensor will be developed for detection of traumatic brain injury biomarkers in a blood sample. The device is used to assist the rapid diagnosis of brain injury and to help the treatment of traumatic brain injury. The developed technique will bring benefits to patients and save costs.

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Academic Research Enhancement Awards (AREA) (R15)
Project #
1R15NS087515-01
Application #
8688561
Study Section
Special Emphasis Panel (ZRG1-BST-F (80))
Program Officer
Hicks, Ramona R
Project Start
2014-02-15
Project End
2017-01-31
Budget Start
2014-02-15
Budget End
2017-01-31
Support Year
1
Fiscal Year
2014
Total Cost
$433,086
Indirect Cost
$133,217
Name
West Virginia University
Department
Engineering (All Types)
Type
Schools of Engineering
DUNS #
191510239
City
Morgantown
State
WV
Country
United States
Zip Code
26506
Li, Ming; Cushing, Scott K; Wu, Nianqiang (2015) Plasmon-enhanced optical sensors: a review. Analyst 140:386-406