Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by production of autoantibodies against nucleic acids, most prominently against double-stranded DNA (dsDNA). Defective clearance of DNA from apoptotic cells by DNA-degrading enzymes (DNases) has been implicated into the pathogenesis of SLE. We have characterized mice with targeted deletion of one such DNase, and observed that they develop prominent anti-dsDNA reactivity and other SLE manifestations. We therefore hypothesize that this mouse strain represents a robust monogenic model of SLE. We propose to validate this model and gain insight into the mechanism of the disease, using two Specific Aims.
In Aim 1, we will characterize the kinetics and features of SLE development, as well as the role of innate DNA-sensing pathways.
In Aim 2, we will test the cellular basis of the disease, particularly the role of dendritic cells in the breach of tolerance to self-DNA. Collectively, thes studies should establish a novel monogenic animal model that would be particularly suitable for genetic dissection of experimental SLE. In addition, they would validate a novel molecular culprit in the pathogenesis of SLE and characterize its role in immune tolerance to nucleic acids.

Public Health Relevance

Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by production of autoantibodies against nucleic acids such as double-stranded DNA. Defective clearance of DNA from dying cells by DNA-degrading enzymes (DNases) has been implicated into SLE development. We will characterize animals deficient in one such DNase in order to develop a novel experimental model of human SLE.

Agency
National Institute of Health (NIH)
Institute
National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS)
Type
Exploratory/Developmental Grants (R21)
Project #
5R21AR064460-02
Application #
8695294
Study Section
Hypersensitivity, Autoimmune, and Immune-mediated Diseases Study Section (HAI)
Program Officer
Mancini, Marie
Project Start
2013-07-03
Project End
2015-06-30
Budget Start
2014-07-01
Budget End
2015-06-30
Support Year
2
Fiscal Year
2014
Total Cost
Indirect Cost
Name
Columbia University (N.Y.)
Department
Microbiology/Immun/Virology
Type
Schools of Medicine
DUNS #
City
New York
State
NY
Country
United States
Zip Code
10032
Sisirak, Vanja; Sally, Benjamin; D'Agati, Vivette et al. (2016) Digestion of Chromatin in Apoptotic Cell Microparticles Prevents Autoimmunity. Cell 166:88-101