For a growing population of low- and intermediate-risk prostate cancer (CaP) patients, active surveillance may be biologically or psychologically undesirable. Yet the short- and long-term complications and co-morbidities associated with radical whole-organ therapies (e.g. intensity modulated radiation therapy) are still associated with a risk of treatment-related morbidity. With radical whole gland therapies, in certain patients who are more sensitive to radiation treatment, high dosage spots in the rectum and in the bladder can lead to complications including chronic rectal bleeding, diarrhea, and urinary symptoms such as cystitis. Laser induced interstitial thermal therapy (LITT) is a novel form of controlled, targeted thermal ablation that may offer measurable advantages over other ablative therapies for focal prostate therapy. Because LITT is MRI compatible, it enables an imaging advantage over other surgical or ablation techniques that utilize transrectal ultrasound to target and monitor treatment. However successful adoption of focal therapy for the treatment of CaP will hinge on several critical issues: 1) Can we accurately identify index lesions and cancers within the prostate? 2) Appropriate follow-up of patients treated with focal therapy and 3) How to detect recurrent/persistent disease? The introduction of multi-parametric (MP) MRI (T2w, dynamic contrast enhanced (DCE), Diffusion (DWI)) has allowed for (1) improved detection sensitivity and specificity for CaP localization, and (2) evaluating treatment response in the prostate. However there exists a need for (1) novel computational image analysis tools to quantitatively integrate MP-MRI parameters for improved CaP classification in vivo and (2) non-rigid registration tools for enabling targeted therapy and evaluation of post-treatment changes. In this study we will employ sophisticated computer vision, image analysis, computer assisted diagnostic (CAD) and deformable registration tools in conjunction with MP-MRI to be used in conjunction with a small clinical trial involving 40 patients with documented CaP for (a) automated delineation of tumor regions on pre-treatment MP-MRI to thereby identify the specific regions for ablation via LITT, and (b) identify and delineate locally recurrent disease within and outside the ablation zone for post-LITT evaluation. Regions identified via CAD on pre-LITT MRI will be targeted for therapy, while on post-LITT MP-MRI, regions identified as being suspicious for CaP recurrence (on account of large changes in MR imaging markers) will be evaluated via needle core biopsy. The tools developed in this project will be integrated into a practical and feasible treatment paradigm for focal treatment of low-risk localized CaP which will allow patients to avoid the complications associated with radical whole-gland therapy. This inter-disciplinary, translational project combines engineering expertise in terms of CAD on MP-MRI, multimodal image registration and machine learning and clinical expertise in interventional radiology, prostate MRI, and MRI guided focal therapy.

Public Health Relevance

In this study we will leverage sophisticated computer vision, image analysis, computer assisted diagnostic and deformable registration tools in conjunction with multi-parametric (MP) MRI in prostate cancer (CaP) patients for (a) automated delineation of tumor regions on pre-treatment MP-MRI and thereby identify the specific regions for ablation via laser induced interstitial thermal therapy (LITT), and (b) identify and delineate locally recurrent disease within and outside the ablation zone for post-LITT evaluation. The tools developed in this project will be integrated into a feasible treatment paradigm for focal treatment of low-risk localized CaP which will allow patients to avoid the complications associated with radical whole-gland therapy.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Exploratory/Developmental Grants (R21)
Project #
1R21CA167811-01
Application #
8308194
Study Section
Special Emphasis Panel (ZRG1-SBIB-W (56))
Program Officer
Farahani, Keyvan
Project Start
2012-09-12
Project End
2012-09-13
Budget Start
2012-09-12
Budget End
2012-09-13
Support Year
1
Fiscal Year
2012
Total Cost
$5,883
Indirect Cost
$5,883
Name
Rutgers University
Department
Biomedical Engineering
Type
Schools of Engineering
DUNS #
001912864
City
New Brunswick
State
NJ
Country
United States
Zip Code
08901
Toth, Robert; Traughber, Bryan; Ellis, Rodney et al. (2014) A Domain Constrained Deformable (DoCD) Model for Co-registration of Pre- and Post-Radiated Prostate MRI. Neurocomputing 114:3-12
Lee, George; Sparks, Rachel; Ali, Sahirzeeshan et al. (2014) Co-occurring gland angularity in localized subgraphs: predicting biochemical recurrence in intermediate-risk prostate cancer patients. PLoS One 9:e97954
Lewis Jr, James S; Ali, Sahirzeeshan; Luo, Jingqin et al. (2014) A quantitative histomorphometric classifier (QuHbIC) identifies aggressive versus indolent p16-positive oropharyngeal squamous cell carcinoma. Am J Surg Pathol 38:128-37
Litjens, Geert; Toth, Robert; van de Ven, Wendy et al. (2014) Evaluation of prostate segmentation algorithms for MRI: the PROMISE12 challenge. Med Image Anal 18:359-73
Viswanath, Satish; Toth, Robert; Rusu, Mirabela et al. (2014) Identifying Quantitative In Vivo Multi-Parametric MRI Features For Treatment Related Changes after Laser Interstitial Thermal Therapy of Prostate Cancer. Neurocomputing 144:13-23
Rusu, Mirabela; Bloch, B Nicolas; Jaffe, Carl C et al. (2014) Prostatome: a combined anatomical and disease based MRI atlas of the prostate. Med Phys 41:072301
Tiwari, Pallavi; Danish, Shabbar; Madabhushi, Anant (2014) Identifying MRI markers to evaluate early treatment related changes post laser ablation for cancer pain management. Proc SPIE Int Soc Opt Eng 9036:90362L
Wang, Haibo; Singanamalli, Asha; Ginsburg, Shoshana et al. (2014) Selecting features with group-sparse nonnegative supervised canonical correlation analysis: multimodal prostate cancer prognosis. Med Image Comput Comput Assist Interv 17:385-92
Wan, Tao; Madabhushi, Anant; Phinikaridou, Alkystis et al. (2014) Spatio-temporal texture (SpTeT) for distinguishing vulnerable from stable atherosclerotic plaque on dynamic contrast enhancement (DCE) MRI in a rabbit model. Med Phys 41:042303
Prasanna, Prateek; Tiwari, Pallavi; Madabhushi, Anant (2014) Co-occurrence of local anisotropic gradient orientations (CoLIAGe): distinguishing tumor confounders and molecular subtypes on MRI. Med Image Comput Comput Assist Interv 17:73-80

Showing the most recent 10 out of 17 publications