Non-small cell lung carcinoma (NSCLC) accounts for about 87% of all lung cancer, the leading cause of cancer-related death for men and women with an overall 5 year survival rate of 10-15%. Efforts to improve the survival of NSCLC patients are currently focused on the development of new target-based therapies directed against key signaling pathways involved in lung cancer growth and malignant progression. A successful example of this approach has been the development of therapies targeting the epidermal growth factor receptor (EGFR) in NSCLC. Patients with EGFR activating mutations (which account for about 10%-15% of NSCLC) receive tremendous benefit from EGFR tyrosine kinase inhibitor therapy and are thought to represent the majority of patients who benefit from EGFR-directed therapies. Patients with tumors containing Exon 19 EGFR mutations have longer survival time following treatment. One of the main barriers to these targeted therapies is obtaining easily accessible high-quality nucleic acids for diagnostic analysis. Recently, our collaborator showed that thrombocytes (platelets) can be used as a novel source of high-quality tumor-derived (mutant) RNAs. This intriguing finding meets current requirements for diagnostics since the method is easy, non-invasive and suitable for detecting tumor-derived RNAs in various cancer types. In this study, we will explore blood platelets as a source for detection of NSCLC predictive/responsive biomarkers.

Public Health Relevance

In this proposal, we will explore blood platelets as a robust source for NSCLC mutant RNAs predictive biomarkers. This technology could be easily adapted into the clinical laboratory and can help advancing NSCLC biomarkers detection and guiding personalized therapy

Agency
National Institute of Health (NIH)
Type
Exploratory/Developmental Grants (R21)
Project #
5R21CA176359-02
Application #
8692700
Study Section
Special Emphasis Panel (ZCA1)
Program Officer
Kim, Kelly Y
Project Start
Project End
Budget Start
Budget End
Support Year
2
Fiscal Year
2014
Total Cost
Indirect Cost
Name
Massachusetts General Hospital
Department
Type
DUNS #
City
Boston
State
MA
Country
United States
Zip Code
02199