Unconjugated bilirubin, the hydrophobic end-product of heme degradation, is generally held to be little more than a metabolic by-product of heme catabolism. Heme oxygenase (HO) is the rate-limiting enzyme in the conversion of heme to bilirubin. The inducible isoform of this enzyme, HO-1, is up-regulated in response to inflammatory stimuli and has been shown to be cytoprotective in a number of tissue injury models. Hence, we speculate that bilirubin may be a primary mediator of the protective effects of HO-1 in the liver and in other organ systems. The proposed studies will specifically investigate the hypothesis that bilirubin functions as an endogenous inhibitor of the inflammatory response. The broad, long-term objectives of the outlined research proposal are to characterize the mechanism(s) underlying the anti-inflammatory properties of bilirubin and to explore potential therapeutic implications. The experiments outlined in Specific Aim 1 are designed to evaluate the potency and establish the pathways whereby bilirubin suppresses inflammatory responses in vivo, through the use of established rodent models of inflammation. Studies will specifically evaluate the ability of bilirubin to regulate NF-kappaB nuclear translocation, the expression of key NF-kappaB dependent pro-inflammatory enzymes, and the activation of proteinase-activated receptors (PARs).
Specific Aim 2 will focus on investigating whether bilirubin exerts a direct effect on the activity of enzymes essential to the inflammatory response, including cyclooxygenases, nitric oxide synthase, phospholipases, and prototype serine protease activators of PARs (e.g., trypsin, thrombin). Kinetic and binding analyses will facilitate elucidation of the mechanisms underlying bilirubin's effects. Based on the findings of the above outlined analyses, future studies will focus on the mechanism(s) whereby bilirubin suppresses NF-kappaB activation and on the local regulation of bilirubin production and catabolism at sites of inflammation. It is anticipated that the results of these studies will provide a more comprehensive understanding of the role that bilirubin plays in the regulation of inflammation. As bilirubin is fairly innocuous in adults even at high concentrations, the findings of the proposed experiments may lay the foundation for potential new therapies for the treatment of inflammatory conditions.

National Institute of Health (NIH)
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Exploratory/Developmental Grants (R21)
Project #
Application #
Study Section
General Medicine A Subcommittee 2 (GMA)
Program Officer
Serrano, Jose
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Cincinnati
Internal Medicine/Medicine
Schools of Medicine
United States
Zip Code
Vogel, Megan E; Zucker, Stephen D (2016) Bilirubin acts as an endogenous regulator of inflammation by disrupting adhesion molecule-mediated leukocyte migration. Inflamm Cell Signal 3:
Idelman, Gila; Smith, Darcey L H; Zucker, Stephen D (2015) Bilirubin inhibits the up-regulation of inducible nitric oxide synthase by scavenging reactive oxygen species generated by the toll-like receptor 4-dependent activation of NADPH oxidase. Redox Biol 5:398-408
Zucker, Stephen D; Vogel, Megan E; Kindel, Tammy L et al. (2015) Bilirubin prevents acute DSS-induced colitis by inhibiting leukocyte infiltration and suppressing upregulation of inducible nitric oxide synthase. Am J Physiol Gastrointest Liver Physiol 309:G841-54
Smith, Darcey L H; Shire, Norah J; Watts, Nelson B et al. (2006) Hyperbilirubinemia is not a major contributing factor to altered bone mineral density in patients with chronic liver disease. J Clin Densitom 9:105-13
Keshavan, Pavitra; Deem, Tracy L; Schwemberger, Sandy J et al. (2005) Unconjugated bilirubin inhibits VCAM-1-mediated transendothelial leukocyte migration. J Immunol 174:3709-18
Zucker, Stephen D; Horn, Paul S; Sherman, Kenneth E (2004) Serum bilirubin levels in the U.S. population: gender effect and inverse correlation with colorectal cancer. Hepatology 40:827-35
Wang, Weizheng W; Smith, Darcey L H; Zucker, Stephen D (2004) Bilirubin inhibits iNOS expression and NO production in response to endotoxin in rats. Hepatology 40:424-33
Keshavan, Pavitra; Schwemberger, Sandy J; Smith, Darcey L H et al. (2004) Unconjugated bilirubin induces apoptosis in colon cancer cells by triggering mitochondrial depolarization. Int J Cancer 112:433-45