Climate change is likely to profoundly influence air quality, with impacts on human health. Conversely, actions to address climate change are expected to benefit air quality and health, both by reducing co-emitted air pollutants and by slowing the effects of climate change on air quality. Our overall goals are to quantify the effects of climate change on global human health through changes in air quality, in the past and in future scenarios, and to quantify the air quality and health benefits of actions to slow climate change. This is done by combining global atmospheric modeling with methods of assessing human health impacts, in simulations reflecting climate change, future emission projections, and policies to reduce emissions.
In Aim 1, we will assess premature human mortality caused by exposure to outdoor ozone and fine particulate matter (PM2.5) for current simulations from an ensemble of global climate-chemistry models. For the present, we will attribute mortalities to anthropogenic air pollution and the component attributable to climate change, which has not been quantified previously. We will likewise model future air pollution mortality to 2100 in four scenarios, and attribute changes in mortality to changes in pollutant emissions and changes in climate. By analyzing global distributions, we will identify the populations most vulnerable to air pollution mortality and changes in air quality due to climate change, at present and in the future.
Aim 2 emphasizes the air quality and health co- benefits of widespread actions to address climate change. We will quantify co-benefits of global greenhouse gas mitigation using our own global atmospheric model simulations of scenarios to 2100. This study differs from previous co-benefits studies by being global, by considering future scenarios, and by distinguishing two mechanisms of co-benefits - reducing co-emitted air pollutants and slowing the effects of climate change on air quality. Similarly, in Aim 3, we will quantify the air quality and human health benefits of seven specific actions to reduce emissions of short-lived climate forcers - black carbon (BC) and co-emitted species. We will build on recent research that shows the substantial climate and air quality benefits of these seven actions together, by modeling the air quality benefits and avoided mortalities of each action individually, as well as the benefits of selected actions in specific world regions. In support of these aims, Aim 4 will improve methods of modeling of PM2.5 exposure for global health assessment, as coarse resolution global models cannot resolve gradients in pollutant concentrations near urban areas. We will improve these methods by: i.) modeling sub-grid cell variability using newly available satellite data, ii.) using fine-resolution regional air quality models to apportion that variability to different chemical components, and iii.) using new fine-resolution emissions inventories to attribute variability to source categories. Overall, this research will improve understanding of the range of future health impacts of air pollution and climate change, and of climate-air interactions, to inform decisions on mitigation of climate change and adaptation to climate change through air quality management.

Public Health Relevance

In this project, we will quantify the effects of past climate change on global human health through changes in air quality, as well as a range of projected future changes in air pollution human mortality caused by changes in both air pollutant emissions and climate change. We will likewise quantify the benefits for air quality and human health of widespread global actions to slow climate change, through greenhouse gas and black carbon emissions reductions. This research will inform: i.) public health management by identifying the populations most vulnerable to air pollution health effects, and to the effects of climate change on air quality, ii.) Decisions regarding climate change mitigation by quantifying the health benefits of such actions, and iii.) Decisions on climate change adaptation by projecting future air quality and health impacts.

Agency
National Institute of Health (NIH)
Institute
National Institute of Environmental Health Sciences (NIEHS)
Type
Exploratory/Developmental Grants (R21)
Project #
1R21ES022600-01
Application #
8474026
Study Section
Special Emphasis Panel (ZRG1-PSE-D (56))
Program Officer
Dilworth, Caroline H
Project Start
2013-06-18
Project End
2015-05-31
Budget Start
2013-06-18
Budget End
2014-05-31
Support Year
1
Fiscal Year
2013
Total Cost
$223,336
Indirect Cost
$73,336
Name
University of North Carolina Chapel Hill
Department
Public Health & Prev Medicine
Type
Schools of Public Health
DUNS #
608195277
City
Chapel Hill
State
NC
Country
United States
Zip Code
27599
Silva, Raquel A; West, J Jason; Lamarque, Jean-François et al. (2017) FUTURE GLOBAL MORTALITY FROM CHANGES IN AIR POLLUTION ATTRIBUTABLE TO CLIMATE CHANGE. Nat Clim Chang 7:647-651
Silva, Raquel A; Adelman, Zachariah; Fry, Meridith M et al. (2016) The Impact of Individual Anthropogenic Emissions Sectors on the Global Burden of Human Mortality due to Ambient Air Pollution. Environ Health Perspect 124:1776-1784
Silva, Raquel A; West, J Jason; Lamarque, Jean-François et al. (2016) The effect of future ambient air pollution on human premature mortality to 2100 using output from the ACCMIP model ensemble. Atmos Chem Phys 16:9847-9862
Zhang, Yuqiang; Bowden, Jared H; Adelman, Zachariah et al. (2016) Co-benefits of global and regional greenhouse gas mitigation on U.S. air quality in 2050. Atmos Chem Phys 16:9533-9548
Punger, Elizabeth M; West, J Jason (2013) The effect of grid resolution on estimates of the burden of ozone and fine particulate matter on premature mortality in the United States. Air Qual Atmos Health 6:
West, J Jason; Smith, Steven J; Silva, Raquel A et al. (2013) Co-benefits of Global Greenhouse Gas Mitigation for Future Air Quality and Human Health. Nat Clim Chang 3:885-889