Short-term exposures to higher temperature and heat waves have been associated with adverse acute cardiovascular and respiratory mortality, but less is known about the chronic effects of weather. We propose to evaluate the chronic adverse health risks associated with long-term exposure to fluctuations in the weather parameters in persons aged over 64 years on a national scale, focusing on mortality in all Medicare enrollees, and in subjects with specific cardiovascular and neurological conditions. We will identify how the health risks changed over the years, and use this information to make predictions of how the risks will change under different climate scenarios. In a recent paper we showed that long-term exposure to high day-to-day variability in summer temperatures (defined as the standard deviation of daily levels of summer temperature) might elevate the risk of mortality in different subgroups of susceptible populations of elderly1. In this project we will partner with the Atmospheric Chemistry Modeling Group at Harvard: (1) to estimate the chronic effects associated with long-term exposure to higher day-to-day variability in temperature and in water vapor pressure (WVP) within summer months (June-August) on mortality in all Medicare enrollees;(2) to examine the chronic effects on mortality in subject with specific conditions such as cardiovascular and neurological disease;(3) to identify characteristics of city (e.g. socio-economic status, percent of green space climate zone, population in poverty, percent of population by race, air conditioning prevalence) which modify the risk of dying. Specifically, we will identify whether changes in weather related risk over time and space are associated to changes in urban structure, air conditioning prevalence, and socioeconomic status both within city and across cities, and whether differences in sensitivity to weather variability across locations are related to green space and population characteristics. Importantly, these city level characteristics will be defined on the zip-code level, not the city level, allowing us to capture te impact of true local land use. (4) Finally, we will predict how life expectancy will change with increasing variability of summertime temperatures in a future atmosphere. An innovative aspect of our investigation is that we will focus on less explored weather parameters such as variability in temperature and variability in WVP. We will analyze the data using novel statistical methods (survival models with time-varying factors and meta-regression models). The findings of this national analysis will advance statistical analyses of climate change data and knowledge of the impacts of temperature and humidity variability on life expectancy. By producing results that can be extrapolated to the future, by identifying the covariates that explain the differences in temperature related mortality over time and across cities, we will identify key factors important for adaptation and mitigation strategies. Results of our study will aid NIH by identifying specific cardiovascular disease that might exacerbate risk, which will lead to targeted and cost effective interventions.

Public Health Relevance

This project will quantify the chronic effects associated with long-term exposure to day-to-day variability in summer temperature and water vapor pressure, and by estimating changes in weather related mortality risks over the years we will identify how much people adapt. We will also identify whether changes in survival over time and space are related to changes in area level characteristics and individual level characteristics;finally we wll project health consequences of increasing variability of summertime temperatures under different future scenarios of climate change.

Agency
National Institute of Health (NIH)
Institute
National Institute of Environmental Health Sciences (NIEHS)
Type
Exploratory/Developmental Grants (R21)
Project #
1R21ES024012-01A1
Application #
8695767
Study Section
Cardiovascular and Sleep Epidemiology (CASE)
Program Officer
Dilworth, Caroline H
Project Start
2014-08-19
Project End
2016-07-31
Budget Start
2014-08-19
Budget End
2015-07-31
Support Year
1
Fiscal Year
2014
Total Cost
$242,803
Indirect Cost
$92,803
Name
Harvard University
Department
Public Health & Prev Medicine
Type
Schools of Public Health
DUNS #
149617367
City
Boston
State
MA
Country
United States
Zip Code
02115
Gronlund, Carina J; Zanobetti, Antonella; Wellenius, Gregory A et al. (2016) Vulnerability to Renal, Heat and Respiratory Hospitalizations During Extreme Heat Among U.S. Elderly. Clim Change 136:631-645
Wang, Yan; Bobb, Jennifer F; Papi, Bianca et al. (2016) Heat stroke admissions during heat waves in 1,916 US counties for the period from 1999 to 2010 and their effect modifiers. Environ Health 15:83
Lee, Mihye; Shi, Liuhua; Zanobetti, Antonella et al. (2016) Study on the association between ambient temperature and mortality using spatially resolved exposure data. Environ Res 151:610-617
Shi, Liuhua; Liu, Pengfei; Kloog, Itai et al. (2016) Estimating daily air temperature across the Southeastern United States using high-resolution satellite data: A statistical modeling study. Environ Res 146:51-8
Shi, Liuhua; Liu, Pengfei; Wang, Yan et al. (2016) Chronic effects of temperature on mortality in the Southeastern USA using satellite-based exposure metrics. Sci Rep 6:30161
Kioumourtzoglou, Marianthi-Anna; Schwartz, Joel; James, Peter et al. (2016) PM2.5 and Mortality in 207 US Cities: Modification by Temperature and City Characteristics. Epidemiology 27:221-7
Kioumourtzoglou, Marianthi-Anna; Schwartz, Joel D; Weisskopf, Marc G et al. (2016) Long-term PM2.5 Exposure and Neurological Hospital Admissions in the Northeastern United States. Environ Health Perspect 124:23-9
Wang, Yan; Shi, Liuhua; Zanobetti, Antonella et al. (2016) Estimating and projecting the effect of cold waves on mortality in 209 US cities. Environ Int 94:141-9
Bell, Michelle L; Son, Ji-Young; Peng, Roger D et al. (2015) Ambient PM2.5 and Risk of Hospital Admissions: Do Risks Differ for Men and Women? Epidemiology 26:575-9
Zanobetti, Antonella; Peters, Annette (2015) Disentangling interactions between atmospheric pollution and weather. J Epidemiol Community Health 69:613-5

Showing the most recent 10 out of 11 publications