Every person beyond the age of 50 experiences severe decline of accommodation, leading to presbyopia, with negative consequences in terms of quality of life and work performance. The age-related stiffening of the lens is believed to play a primary role in the decrease of accommodation power. However, currently available experimental data on lens's elastic modulus, its age progression and, importantly, the spatial distribution of elastic modulus inside the lens are highly variable. As a result, a definitive explanation of the biophysical principles guiding lens accommodation is still missing, which hinders the development of effective approaches to delay/slow down presbyopia onset or restore accommodation power. To overcome this limitation, the applicants have developed an optical technology, Brillouin microscopy, which can map the spatial distribution of the lens elastic modulus non-perturbatively and with 3D micron resolution. Leveraging on this novel technology, the objective of this proposal is to measure the 3D biomechanical properties of the aging lens and understand the biophysical principles governing accommodation. The central hypothesis of this proposal is that the accommodation power is lost as a result of an age-related variation in the spatial distribution of the local modulus inside the lens, which results in overal increase of lens stiffness. This hypothesis stems from preliminary data collected with ex vivo human lens samples.
In Aim 1, the hypothesis will be tested through a systematic comparison of elasticity-based metrics of lenses of different ages and their corresponding accommodation power. The statistical analysis of these data will verify that metrics that account for the spatial distribution of modulus are better predictors of accommodation than the local values of elastic moduli inside the lens.
In Aim 2, the hypothesis will be tested by experimentally validating the predictions of a biophysical lens model, developed by the applicants, where the lens behaves as a composite ellipsoid with increasing viscoelastic modulus from periphery to nucleus. With age, the spatial elasticity gradient and the contribution of the harder components inside the lens increase. This results in increased lens """"""""equivalent"""""""" modulus and stiffness causing the decline of accommodation power. As Brillouin technology can be translated to clinical use, the results of this research can be validated in vivo. The approach is innovative because it introduces non- invasive 3D-resolved measurements of lens elastic properties and first-principle biophysical modeling beyond ad hoc simulations. The research is significant because, by unveiling the crucial role of the spatial distribution of elastic modulus inside the lens, it is expected to vertcally advance the mechanistic understanding of the accommodation process as well as, more broadly, of lens growth and function. Ultimately, the knowledge gained from this research is likely to inspire, facilitate and accelerate the on-going effort to develop pharmacological or surgical interventions to preserve or restore accommodation power.

Public Health Relevance

This proposal is relevant to the public health because it will elucidate the governing principles of the accommodation process and identify the mechanical properties of the crystalline lens that drive the decline of accommodation power leading to presbyopia. This is expected to inspire, develop and enable testing current and future approaches to preserve or restore accommodation. In addition, this will broadly provide mechanistic insights on lens growth and function as well as on cataract formation. Therefore, the proposed research is relevant to the NIH's mission of pursuing fundamental knowledge in order to extend healthy life.

Agency
National Institute of Health (NIH)
Institute
National Eye Institute (NEI)
Type
Exploratory/Developmental Grants (R21)
Project #
1R21EY023043-01
Application #
8429549
Study Section
Special Emphasis Panel (NOIT)
Program Officer
Wiggs, Cheri
Project Start
2013-06-01
Project End
2015-05-31
Budget Start
2013-06-01
Budget End
2014-05-31
Support Year
1
Fiscal Year
2013
Total Cost
$274,703
Indirect Cost
$116,828
Name
Massachusetts General Hospital
Department
Type
DUNS #
073130411
City
Boston
State
MA
Country
United States
Zip Code
02199
Weber, Isabell P; Yun, Seok Hyun; Scarcelli, Giuliano et al. (2017) The role of cell body density in ruminant retina mechanics assessed by atomic force and Brillouin microscopy. Phys Biol 14:065006
Besner, Sebastien; Scarcelli, Giuliano; Pineda, Roberto et al. (2016) In Vivo Brillouin Analysis of the Aging Crystalline Lens. Invest Ophthalmol Vis Sci 57:5093-5100
Sibillano, T; De Caro, L; Scattarella, F et al. (2016) Interfibrillar packing of bovine cornea by table-top and synchrotron scanning SAXS microscopy. J Appl Crystallogr 49:1231-1239
Kim, Moonseok; Besner, Sebastien; Ramier, Antoine et al. (2016) Shear Brillouin light scattering microscope. Opt Express 24:319-28
Fiore, Antonio; Zhang, Jitao; Shao, Peng et al. (2016) High-extinction virtually imaged phased array-based Brillouin spectroscopy of turbid biological media. Appl Phys Lett 108:203701
Zhang, Jitao; Fiore, Antonio; Yun, Seok-Hyun et al. (2016) Line-scanning Brillouin microscopy for rapid non-invasive mechanical imaging. Sci Rep 6:35398
Akca, B Imran; Chang, Ernest W; Kling, Sabine et al. (2015) Observation of sound-induced corneal vibrational modes by optical coherence tomography. Biomed Opt Express 6:3313-9
Berghaus, Kim V; Yun, Seok H; Scarcelli, Giuliano (2015) High Speed Sub-GHz Spectrometer for Brillouin Scattering Analysis. J Vis Exp :e53468
Girard, Michaƫl J A; Dupps, William J; Baskaran, Mani et al. (2015) Translating ocular biomechanics into clinical practice: current state and future prospects. Curr Eye Res 40:1-18
Scarcelli, Giuliano; Besner, Sebastien; Pineda, Roberto et al. (2015) In vivo biomechanical mapping of normal and keratoconus corneas. JAMA Ophthalmol 133:480-2

Showing the most recent 10 out of 15 publications