This is an exploratory grant proposal directed at determining the function of the TWIK-2 potassium channel in vascular smooth muscle. TWIK-2 is a member of a newly discovered """"""""Two-Pore Domain"""""""" potassium channel family (K2P). While it is expressed in a number of tissues throughout the body, TWIK-2 is particularly enriched in vascular tissue. The function of TWIK-2 in arteries or any other tissue is not known. In the spirit of the R21 Grant, this proposal involves """"""""exploratory and developmental research"""""""" in the """"""""early and conceptual stages"""""""" of determining the role of TWIK-2 in vascular smooth muscle. Since there are no selective activators or inhibitors for TWIK-2, we have made a TWIK-2 knockout mouse by deleting the first coding exon. This exon contains the start codon and a portion of the pore region. The goal of this proposal is to determine the role of TWIK-2 in vascular smooth muscle using our TWIK-2 knockout mouse model. Potassium channels are involved with the regulation of vascular diameter, volume regulation during osmotic stress and apoptosis, proliferation, and migration. We will address the following specific aims regarding TWIK-2 in these processes:
In Specific Aim 1, we will determine if TWIK-2 is involved with the regulation of vascular diameter.
In Specific Aim 2, we will determine if TWIK-2 is involved with volume regulation in vascular smooth muscle. Changes in volume as a result of K channel activation occur during apoptosis or osmotic stress.
In Specific Aim 3, we will determine if TWIK-2 is involved with proliferation and/or migration of vascular smooth muscle. We will use a combination of techniques in wild type and TWIK-2 knockout mice to measure differences in function and electrical properties of vascular smooth muscle. TWIK-2 is a potentially novel and significant regulator of vascular function. Our studies should provide the essential foundation for future studies to determine the role of TWIK-2 in pathological processes.

Public Health Relevance

Potassium channels are involved with normal physiological processes and can become dysfunctional during pathological conditions. TWIK-2, a newly discovered potassium channel, is highly expressed in arteries. The function of TWIK-2 is not presently known. The proposed research will investigate the functional role of TWIK-2 in arteries. An understanding of the role for TWIK-2 in arteries will help in understanding the regulation of blood flow and blood pressure. TWIK-2 could be a major target for therapeutic manipulation during pathological states.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Exploratory/Developmental Grants (R21)
Project #
5R21HL098921-02
Application #
8018990
Study Section
Hypertension and Microcirculation Study Section (HM)
Program Officer
Reid, Diane M
Project Start
2010-02-01
Project End
2012-01-31
Budget Start
2011-02-01
Budget End
2012-01-31
Support Year
2
Fiscal Year
2011
Total Cost
$191,875
Indirect Cost
Name
Baylor College of Medicine
Department
Anesthesiology
Type
Schools of Medicine
DUNS #
051113330
City
Houston
State
TX
Country
United States
Zip Code
77030
Madry, Christian; Kyrargyri, Vasiliki; Arancibia-Cárcamo, I Lorena et al. (2018) Microglial Ramification, Surveillance, and Interleukin-1? Release Are Regulated by the Two-Pore Domain K+ Channel THIK-1. Neuron 97:299-312.e6
Pandit, Lavannya M; Lloyd, Eric E; Reynolds, Julia O et al. (2014) TWIK-2 channel deficiency leads to pulmonary hypertension through a rho-kinase-mediated process. Hypertension 64:1260-5
Schwingshackl, Andreas; Teng, Bin; Makena, Patrudu et al. (2014) Deficiency of the two-pore-domain potassium channel TREK-1 promotes hyperoxia-induced lung injury. Crit Care Med 42:e692-701
Nielsen, Gorm; Wandall-Frostholm, Christine; Sadda, Veeranjaneyulu et al. (2013) Alterations of N-3 polyunsaturated fatty acid-activated K2P channels in hypoxia-induced pulmonary hypertension. Basic Clin Pharmacol Toxicol 113:250-8
Lloyd, Eric E; Pandit, Lavannya M; Crossland, Randy F et al. (2013) Endothelium-dependent relaxations in the aorta from K(2p)6.1 knockout mice. Am J Physiol Regul Integr Comp Physiol 305:R60-7
Ford, Kevin J; Arroyo, David A; Kay, Jeremy N et al. (2013) A role for TREK1 in generating the slow afterhyperpolarization in developing starburst amacrine cells. J Neurophysiol 109:2250-9
Lloyd, Eric E; Crossland, Randy F; Phillips, Sharon C et al. (2011) Disruption of K(2P)6.1 produces vascular dysfunction and hypertension in mice. Hypertension 58:672-8