The overall goal of this proposal is to address a widespread clinical problem occurring after the Fontan operation, persistent pleural effusions, through the investigation of vascular endothelial barrier function. The foundational hypothesis of this proposal is that children with single ventricle physiology who undergo the Fontan operation experience derangements in vascular permeability secondary to the profound inflammatory effects of cardiopulmonary bypass (CPB). Therefore, identifying therapeutic targets that restore vascular endothelial barrier may be critical to improving post-operative care after the Fontan operation. Sphingosine 1-phosphate (S1P) is a phospholipid that interacts with G protein coupled receptors on endothelial cells and mediates enhancement of endothelial barrier function, thus reducing vascular permeability. The critical role of S1P in regulating vascular permeability in vivo has been illustrated in animal models. For example, mice deficient in one of the two enzymes responsible for S1P biosynthesis, sphingosine kinase-1, display increased pulmonary microvessel permeability and greater levels of edema formation in response to an inflammatory insult induced with lipopolysaccharide (LPS) or PAR-1 activation. Importantly, intravenous administration of S1P in mice and dogs has been shown to play a protective role in acute lung injury by reducing pulmonary vascular leakage and intrapulmonary shunting. Our preliminary analysis of plasma from Fontan patients has revealed a reduction in postoperative plasma levels of HDL, the principle carrier of the endothelial barrier- promoting sphingolipid, sphingosine-1-phosphate (S1P). Based on these findings we hypothesize that plasma HDL-S1P levels are lowered in children after exposure to CPB and are predictive of persistent pleural effusions and longer post-operative recovery time. Additionally, we hypothesize that blood samples from children with persistent pleural effusions will display evidence of either propensity to disrupt barrier or a lack of ability to promote barrier either of which can be overcome by exogenous administration of S1P. To address these inter-related hypotheses there are two specific aims: 1) to determine whether plasma levels of S1P correlate with clinical markers of prolonged postoperative recovery (i.e., persistent pleural effusions) after the Fontan operation, and 2) to determine the level of barrier integrity induced by plasma samples from Fontan operation patients and determine if this correlates with S1P levels and/or severity of post-operative pleural effusions. These later studies will also determine whether exogenous administration of S1P can increase the capacity of the samples to enhance barrier in vitro to levels achieved using preoperative samples.
The aims of the application may lead to new S1P based strategies for treatment of derangements in vascular permeability in Fontan patients and other infants and children undergoing CPB.

Public Health Relevance

Capillary leakage leading to persistent pleural effusions and multiorgan dysfunction continue to be a significant post-operative problem in children following cardiopulmonary bypass (CPB). Studies to be performed as part of this research program will test the hypothesis that children with persistent pleural effusions have insufficiencies in an HDL-associated lipid, S1P that controls blood vessel barrier maintenance. If plasma levels of S1P are found to be predictive of persistent pleural effusions and prolonged post-operative recovery time after CPB then exogenous administration of S1P may hold promise in improving post-operative recovery after CPB.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Exploratory/Developmental Grants (R21)
Project #
1R21HL109829-01A1
Application #
8302043
Study Section
Clinical and Integrative Cardiovascular Sciences Study Section (CICS)
Program Officer
Burns, Kristin
Project Start
2012-04-01
Project End
2014-03-31
Budget Start
2012-04-01
Budget End
2013-03-31
Support Year
1
Fiscal Year
2012
Total Cost
$221,250
Indirect Cost
$71,250
Name
Medical University of South Carolina
Department
Anatomy/Cell Biology
Type
Schools of Medicine
DUNS #
183710748
City
Charleston
State
SC
Country
United States
Zip Code
29425
Wilkerson, Brent A; Argraves, Kelley M (2014) The role of sphingosine-1-phosphate in endothelial barrier function. Biochim Biophys Acta 1841:1403-1412