Chronic venous insufficiency (CVI) is a common and costly disease characterized by excessive vein dilation and varicose veins. CVI commonly occurs in the lower extremity, suggesting a role of venous pressure and vein wall stretch. Also, the plasma and venous tissue levels of matrix metalloproteinases (MMPs) are elevated in CVI, suggesting a role for MMPs in vein dilation. We have found that prolonged stretch of rat veins is associated with decreased contraction and increased expression of MMP-2 and -9. Also, varix segments of varicose veins demonstrate reduced contraction as compared to control saphenous vein. These novel findings make it important to investigate the link between vein wall stretch and MMPs in the venous dilation associated with varicose veins, and to identify the upstream and downstream mechanisms involved. Our data suggest that prolonged vein stretch is associated with increased expression of hypoxia-inducible factors (HIF). Also, MMP- 2 and -9 induce relaxation of vein segments even in the absence of detectable extracellular matrix (ECM) degradation, suggesting inhibition of venous smooth muscle (VSM) contraction mechanisms. The objective of this proposal is to test the central hypothesis that increased venous pressure and prolonged vein wall stretch are associated with upregulation of a mechano-sensitive HIF-MMP pathway, which in turn causes downstream inhibition of VSM contraction mechanisms and increased degradation of ECM proteins, leading to excessive venous dilation. Consequently, downregulation of the HIF-MMP pathway should improve reactivity in veins subjected to prolonged stretch and in varicose veins. Mechanistic studies will be conducted in a rat model of increased femoral venous pressure, and on isolated iliac and femoral veins. Although the rat is a four-legged animal, the rat is a consistent breed that avoids the variability in age, sex and other confounding factors in humans. To enhance the translational aspects, experiments will be conducted on human varix veins as compared to adjacent proximal and distal veins, and control saphenous veins.
The specific aims are to determine whether: 1) Increased venous pressure/vein wall stretch is associated with decreased vein contraction and upregulation of HIF/MMP pathway. 2) Increases in HIF/MMP activity promote venous dilation by downstream inhibition of the mechanisms of VSM contraction including [Ca2+]i, protein kinase C and Rho- kinase activity, and increased ECM degradation. 3) The increased venous dilation in varicose veins occurs as a result of upregulation of HIF/MMPs, and therefore downregulation of HIF or MMPs using HIF or MMP inhibitors and siRNA should improve contraction in varix segments to levels approaching those observed in the adjacent proximal or distal veins, or in control saphenous vein. These studies would elucidate the relation between increased venous pressure/vein wall stretch, HIF/MMP expression/activity, reduced mechanisms of VSM contraction, and excessive venous dilation. The results would highlight the benefits of specific inhibitors of HIF and MMPs as a new strategy to prevent the progression and recurrence of varicose veins.

Public Health Relevance

Chronic venous insufficiency is a progressive venous disease characterized by excessive venous dilation and varicose veins. The objective of this proposal is to test the hypothesis that increased venous pressure and prolonged vein wall stretch are associated with upregulation of a mechano-sensitive hypoxia-inducible factor-matrix metalloproteinase pathway, which causes inhibition of venous smooth muscle contraction mechanisms, degradation of extracellular matrix proteins, and excessive venous dilation. The results from these exploratory studies would highlight the benefits of specific inhibitors of hypoxia-inducible factor and matrix metalloproteinases as a new strategy to prevent the progression and recurrence of varicose veins.

National Institute of Health (NIH)
Exploratory/Developmental Grants (R21)
Project #
Application #
Study Section
Vascular Cell and Molecular Biology Study Section (VCMB)
Program Officer
Reid, Diane M
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Brigham and Women's Hospital
United States
Zip Code
Anwar, M A; Vorkas, P A; Li, J et al. (2016) Prolonged Mechanical Circumferential Stretch Induces Metabolic Changes in Rat Inferior Vena Cava. Eur J Vasc Endovasc Surg 52:544-552
Possomato-Vieira, J S; Khalil, R A (2016) Mechanisms of Endothelial Dysfunction in Hypertensive Pregnancy and Preeclampsia. Adv Pharmacol 77:361-431
Pojoga, Luminita H; Yao, Tham M; Opsasnick, Lauren A et al. (2015) Cooperative Role of Mineralocorticoid Receptor and Caveolin-1 in Regulating the Vascular Response to Low Nitric Oxide-High Angiotensin II-Induced Cardiovascular Injury. J Pharmacol Exp Ther 355:32-47
Garza, Amanda E; Pojoga, Luminita H; Moize, Burhanuddin et al. (2015) Critical Role of Striatin in Blood Pressure and Vascular Responses to Dietary Sodium Intake. Hypertension 66:674-80
Mata, Karina M; Li, Wei; Reslan, Ossama M et al. (2015) Adaptive increases in expression and vasodilator activity of estrogen receptor subtypes in a blood vessel-specific pattern during pregnancy. Am J Physiol Heart Circ Physiol 309:H1679-96
Mazzuca, Marc Q; Mata, Karina M; Li, Wei et al. (2015) Estrogen receptor subtypes mediate distinct microvascular dilation and reduction in [Ca2+]I in mesenteric microvessels of female rat. J Pharmacol Exp Ther 352:291-304
Shah, Dania A; Khalil, Raouf A (2015) Bioactive factors in uteroplacental and systemic circulation link placental ischemia to generalized vascular dysfunction in hypertensive pregnancy and preeclampsia. Biochem Pharmacol 95:211-26
MacColl, Elisabeth; Khalil, Raouf A (2015) Matrix Metalloproteinases as Regulators of Vein Structure and Function: Implications in Chronic Venous Disease. J Pharmacol Exp Ther 355:410-28
Ali, Sajjadh M J; Khalil, Raouf A (2015) Genetic, immune and vasoactive factors in the vascular dysfunction associated with hypertension in pregnancy. Expert Opin Ther Targets 19:1495-515
Li, Wei; Mata, Karina M; Mazzuca, Marc Q et al. (2014) Altered matrix metalloproteinase-2 and -9 expression/activity links placental ischemia and anti-angiogenic sFlt-1 to uteroplacental and vascular remodeling and collagen deposition in hypertensive pregnancy. Biochem Pharmacol 89:370-85

Showing the most recent 10 out of 18 publications