Neuropathic pain affects over 3% of the U.S. population. It is described as being severe, persistent and highly resistant to conventional treatment. As such, neuropathic pain results in life-long suffering and decreased quality of life for these patients. The mechanisms underlying the development and persistence of neuropathic pain remain unclear;however, there are several factors that could contribute to its development, including astroglial and microglial activation in the spinal dorsal horn (SDH) and activation of satellite glial cells in the dorsal root ganglia (DRG). All of these factors can contribute to increased hyperexcitability of DRG and SDH neurons, which increases pain transmission. Following nerve injury in the central nervous system, cell cycle pathways are activated that lead to astroglial proliferation and microglial activation with inflammation. This response to cell cycl activation may contribute to the development of central neuropathic pain. The purpose of this study is to examine the role of the cell cycle in peripheral neuropathic pain and test our hypothesis that inhibiting the cell cycle pathway decreases neuronal hyperexcitability and mechanical allodynia after peripheral nerve injury, likely by reducing astrogliosis in the spinal cord and satellite glial cell activation in the DRG. Using nocifensive behavioral testing, electrophysiological recording, Western blot and immunohistochemical analyses in a mouse model of peripheral nerve injury (partial sciatic nerve ligation), we will test our hypothesis with the following Specific Aims.
Specific Aim 1 : To demonstrate that the cell cycle pathway is activated in the spinal dorsal horn (SDH) and dorsal root ganglia (DRG) in a mouse model of peripheral nerve injury.
Specific Aim 2 : To demonstrate that inhibiting cell cycle activation in th SDH and DRG decreases allodynia and neuronal hyperexcitability after peripheral nerve injury. The results of this study will be highly important and quickly translatable from the preclinical to the clinical setting, since several cell cycle inhibitor drugs are already in clinical trials for cncer treatment. The findings from this study will also have a broad impact and increase our mechanistic knowledge across chronic pain states.

Public Health Relevance

Neuropathic pain continues to be a serious healthcare concern that is severe, persistent and highly resistant to conventional pain therapies, resulting i lifelong suffering and decreased quality of life for these patients. It is also extraordinarily cosly to patients, families and society. We will investigate whether inhibiting the cell cycle pathway wil decrease neuropathic pain from sciatic nerve injury with the goal to prevent and/or better manage neuropathic pain.

Agency
National Institute of Health (NIH)
Institute
National Institute of Nursing Research (NINR)
Type
Exploratory/Developmental Grants (R21)
Project #
5R21NR014053-02
Application #
8660351
Study Section
Special Emphasis Panel (ZRG1-NRCS-G (08))
Program Officer
Marden, Susan F
Project Start
2013-05-10
Project End
2015-04-30
Budget Start
2014-06-06
Budget End
2015-04-30
Support Year
2
Fiscal Year
2014
Total Cost
$189,956
Indirect Cost
$66,206
Name
University of Maryland Baltimore
Department
None
Type
Schools of Nursing
DUNS #
188435911
City
Baltimore
State
MD
Country
United States
Zip Code
21201
Wu, Junfang; Zhao, Zaorui; Sabirzhanov, Boris et al. (2014) Spinal cord injury causes brain inflammation associated with cognitive and affective changes: role of cell cycle pathways. J Neurosci 34:10989-1006