The neuropathology of mental retardation is thought to be associated with deficits in synaptic structure and function. Our goal is to make contributions into understanding the formation and maintenance of dendritic spines and of postsynaptic Ca2+ homeostasis in neurons expressing Rett Syndrome-associated mutations in MECP2. Rett syndrome (RTT) is an X- linked developmental disorder and the leading cause of mental retardation in females. Mutations in the transcriptional represser MECP2 have been identified in >90% of RTT cases. One of the target genes of MeCP2 is bdnf, brain-derived neurotrophic factor. Considering that BDNF has recently emerged as a potent modulator of activity-dependent synaptic development and plasticity in the postnatal brain, including fundamental neuronal properties such as dendritic spine density and form and neuronal Ca2+ signaling, we hypothesize that a deregulation of BDNF signaling may underlie the dendritic pathologies observed in RTT. The specific hypothesis to be tested is twofold: 1) RTT-associated MECP2 mutations cause dendritic spine loss leading to Impaired dendritic Ca2+ signaling in hippocampal pyramidal neurons through reduced BDNF signaling; 2) impaired dendritic structure in MECP2 mutant neurons can be reverted by BDNF treatment. The consequences of mutant MECP2 expression will be evaluated in neurons maintained in organotypic slice cultures and transfected by particle-mediated gene-transfer. The biolistic gene-transfer approach provides a more flexible way to introduce different mutant forms of MECP2 compared to the generation of transgenic or knockout mice, in addition to allow the co-transfection of other cDNAs or knockdown siRNA constructs of interest. Thus, it represents a novel cellular model of RTT. Transfected neurons will be studied by laser-scanning confocal and time-lapse multiphoton microscopy, as well as by simultaneous Ca2+ imaging and whole-cell intracellular recordings. This combination of state-of-the-art approaches has never been used to investigate MECP2 function, or applied to animal models of RTT. We expect the proposed studies to provide novel insights into the consequences of mutant MECP2 expression in hippocampal neurons in a cellular model of RTT. ? ? ?

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Exploratory/Developmental Grants (R21)
Project #
5R21NS057780-02
Application #
7373574
Study Section
Developmental Brain Disorders Study Section (DBD)
Program Officer
Mamounas, Laura
Project Start
2007-04-01
Project End
2010-03-31
Budget Start
2008-04-01
Budget End
2010-03-31
Support Year
2
Fiscal Year
2008
Total Cost
$145,500
Indirect Cost
Name
University of Alabama Birmingham
Department
Neurosciences
Type
Schools of Medicine
DUNS #
063690705
City
Birmingham
State
AL
Country
United States
Zip Code
35294
Chapleau, Christopher A; Lane, Jane; Larimore, Jennifer et al. (2013) Recent Progress in Rett Syndrome and MeCP2 Dysfunction: Assessment of Potential Treatment Options. Future Neurol 8:
Chapleau, Christopher A; Lane, Jane; Pozzo-Miller, Lucas et al. (2013) Evaluation of current pharmacological treatment options in the management of Rett syndrome: from the present to future therapeutic alternatives. Curr Clin Pharmacol 8:358-69
Chapleau, Christopher A; Pozzo-Miller, Lucas (2012) Divergent roles of p75NTR and Trk receptors in BDNF's effects on dendritic spine density and morphology. Neural Plast 2012:578057
Chapleau, Christopher A; Boggio, Elena Maria; Calfa, Gaston et al. (2012) Hippocampal CA1 pyramidal neurons of Mecp2 mutant mice show a dendritic spine phenotype only in the presymptomatic stage. Neural Plast 2012:976164
Calfa, Gaston; Chapleau, Christopher A; Campbell, Susan et al. (2012) HDAC activity is required for BDNF to increase quantal neurotransmitter release and dendritic spine density in CA1 pyramidal neurons. Hippocampus 22:1493-500
Calfa, Gaston; Hablitz, John J; Pozzo-Miller, Lucas (2011) Network hyperexcitability in hippocampal slices from Mecp2 mutant mice revealed by voltage-sensitive dye imaging. J Neurophysiol 105:1768-84
Calfa, Gaston; Percy, Alan K; Pozzo-Miller, Lucas (2011) Experimental models of Rett syndrome based on Mecp2 dysfunction. Exp Biol Med (Maywood) 236:3-19
Li, Yong; Calfa, Gaston; Inoue, Takafumi et al. (2010) Activity-dependent release of endogenous BDNF from mossy fibers evokes a TRPC3 current and Ca2+ elevations in CA3 pyramidal neurons. J Neurophysiol 103:2846-56
Chapleau, Christopher A; Calfa, Gaston D; Lane, Meredith C et al. (2009) Dendritic spine pathologies in hippocampal pyramidal neurons from Rett syndrome brain and after expression of Rett-associated MECP2 mutations. Neurobiol Dis 35:219-33
Larimore, Jennifer L; Chapleau, Christopher A; Kudo, Shinichi et al. (2009) Bdnf overexpression in hippocampal neurons prevents dendritic atrophy caused by Rett-associated MECP2 mutations. Neurobiol Dis 34:199-211

Showing the most recent 10 out of 13 publications