The objective of this project is to create an optical strategy with high spatio-temporal specificity to regulate the expression of genes that may provide benefit to neurons prone to degeneration. While we will focus on the clearance of pathological forms of microtubule associated protein tau (MAPT), our study will lay the foundation for a variety of future examinations of regulated biological pathways related to disease. Previously reported in expression systems, our study will seek to be the first to use plant phytochromes that are bi-directionally regulated by red light (ON) and far red light (OFF), to induce transcription of a master autophagy regulating protein Transcription Factor EB (TFEB) in neurons. We will then test the capacity of this system to: (i) reduce the presence of pathological MAPT in vitro using cell lines expressing mutant MAPT and human pluripotent stem cells from patients with Down syndrome (DS) and sporadic Alzheimer's disease (AD), (ii) validate that TFEB is causative for, and the autophagy-inducing effects are positively correlated with, reductions in MAPT, and (iii) test whether application of light-induced TFEB expression in the hippocampus of a mouse model of AD can reduce cell death and cause improvements in learning and memory. The main hypothesis is that repeated, transient increases in autophagy can be used to inhibit MAPT-mediated degeneration in brains that cause various forms of tauopathy. Previous studies have shown that sustained increases in TFEB-mediated autophagy can clear MAPT aggregates and improve cell survival. However, chronic induction of autophagy can itself be deleterious and may exacerbate other neurological insults highly prevalent in aging individuals, the target population for tauopathy treatments. Thus, we believe the proposed strategy will provide therapeutic benefits (increased autophagy and reduced MAPT pathology) while reducing the likelihood of side effects such as autophagy-mediated cell death in response to additional cell stresses (e.g. ischemia/vascular dementia). Furthermore, once developed, this system may be applied to many neurological disorders for which regulated gene expression may be desirable, including Parkinson?s disease, Epilepsy, Amyotrophic Lateral Sclerosis, and multiple forms of poly-glutamine disorders (e.g. Huntington?s disease) to name a few.

Public Health Relevance

Optical induction of intracellular signaling holds the promise of tight spatio-temporal control of biological processes related to disease initiation and progression. Autophagy is a relatively new and effective target that holds promise to help prevent or slow down the progression of multiple forms of tauopathy, including Alzheimer?s disease (AD). This project will develop an optical strategy to activate/deactivate autophagic processes in an attempt to promote clearance of pathological forms of tau, while minimizing side effects of chronic autophagy induction.

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Exploratory/Developmental Grants (R21)
Project #
5R21NS093442-02
Application #
9269639
Study Section
Cellular and Molecular Biology of Neurodegeneration Study Section (CMND)
Program Officer
Corriveau, Roderick A
Project Start
2016-06-01
Project End
2018-05-31
Budget Start
2017-06-01
Budget End
2018-05-31
Support Year
2
Fiscal Year
2017
Total Cost
$204,525
Indirect Cost
$69,525
Name
University of New Mexico Health Sciences Center
Department
Neurosciences
Type
Schools of Medicine
DUNS #
829868723
City
Albuquerque
State
NM
Country
United States
Zip Code
87131
Gustus, Kymberly C; Li, Lu; Chander, Praveen et al. (2018) Genetic inactivation of synaptosomal-associated protein 25 (SNAP-25) in adult hippocampal neural progenitors impairs pattern discrimination learning but not survival or structural maturation of newborn dentate granule cells. Hippocampus 28:735-744
Bemiller, Shane M; Maphis, Nicole M; Formica, Shane V et al. (2018) Genetically enhancing the expression of chemokine domain of CX3CL1 fails to prevent tau pathology in mouse models of tauopathy. J Neuroinflammation 15:278
Maphis, Nicole M; Jiang, Shanya; Binder, Jessica et al. (2017) Whole Genome Expression Analysis in a Mouse Model of Tauopathy Identifies MECP2 as a Possible Regulator of Tau Pathology. Front Mol Neurosci 10:69
Huang, Cindy Tzu-Ling; Tao, Yunlong; Lu, Jianfeng et al. (2016) Time-Course Gene Expression Profiling Reveals a Novel Role of Non-Canonical WNT Signaling During Neural Induction. Sci Rep 6:32600
Maphis, Nicole; Jiang, Shanya; Xu, Guixiang et al. (2016) Selective suppression of the ? isoform of p38 MAPK rescues late-stage tau pathology. Alzheimers Res Ther 8:54
Larsen, Zoe H; Chander, Praveen; Joyner, Jason A et al. (2016) Effects of Ethanol on Cellular Composition and Network Excitability of Human Pluripotent Stem Cell-Derived Neurons. Alcohol Clin Exp Res 40:2339-2350
Weick, Jason P; Meyer, Jason S; Ladewig, Julia et al. (2016) Modeling CNS Development and Disease. Stem Cells Int 2016:3241057
Weick, Jason P (2016) Functional Properties of Human Stem Cell-Derived Neurons in Health and Disease. Stem Cells Int 2016:4190438