For 46 years, the Birth Defects Research Laboratory (BDRL) has been the major NIH-funded site for collection and distribution of conceptal tissues. The availability of viable conceptal organs and tissues has made the Laboratory a unique and critical non-profit resource for biomedical research. This application seeks to continue and further develop the core fundamental goal of the laboratory: the systematic collection, staging, identification, and processing of normal specimens and distribution of their tissues to recipients. In this renewal application, we will build upon this central aim to extend the biomedical research resource further by making available samples for DNA/RNA extraction and epigenetic assays. In addition, the investigator will develop the resource by 1) extending the systematic collection, identification, and distribution to abnormal fetuses;2) correlating prenatal data with the post-termination findings from examination/postmortem;3) exploiting the virtual histological and phenotyping capabilities of tissue imaging platforms after performing proof-of-principle studies in genitourinary tract and cardiovascular tissues;4) capitalizing on the expected enrichment of genetic defects underlying fetal congenital anomalies by generating copy number variant data through array-based comparative genomic hybridization studies;5) systematically making accessible tissues and their data for investigators;and 6) engaging and working with key collaborators to improve services and increase recipient numbers in their respective fields. This application builds upon ARRA support, evaluating the utility of novel tissue imaging systems to enhance BDRL services, and stimulating and supporting research based in part on this resource into the bases of birth defects and normal development. Systematically characterizing abnormal fetuses and distributing tissues from these fetuses will exploit the unique positioning of the BDRL to develop this as a significant research resource and service to researchers who seek to understand the underlying developmental biology of normal and abnormal human development.

Agency
National Institute of Health (NIH)
Institute
Eunice Kennedy Shriver National Institute of Child Health & Human Development (NICHD)
Type
Resource-Related Research Projects (R24)
Project #
5R24HD000836-50
Application #
8677903
Study Section
Developmental Biology Subcommittee (CHHD)
Program Officer
Hewitt, Tyl
Project Start
1979-05-01
Project End
2016-01-31
Budget Start
2014-07-01
Budget End
2015-06-30
Support Year
50
Fiscal Year
2014
Total Cost
Indirect Cost
Name
University of Washington
Department
Pediatrics
Type
Schools of Medicine
DUNS #
City
Seattle
State
WA
Country
United States
Zip Code
98195
Yu, Kai; Deng, Mei; Naluai-Cecchini, Theresa et al. (2017) Differences in Oral Structure and Tissue Interactions during Mouse vs. Human Palatogenesis: Implications for the Translation of Findings from Mice. Front Physiol 8:154
Kim, Yong Kyun; Refaeli, Ido; Brooks, Craig R et al. (2017) Gene-Edited Human Kidney Organoids Reveal Mechanisms of Disease in Podocyte Development. Stem Cells 35:2366-2378
Andrews, Allison M; Lutton, Evan M; Cannella, Lee A et al. (2017) Characterization of human fetal brain endothelial cells reveals barrier properties suitable for in vitro modeling of the BBB with syngenic co-cultures. J Cereb Blood Flow Metab :271678X17708690
Close, Jennie L; Yao, Zizhen; Levi, Boaz P et al. (2017) Single-Cell Profiling of an In Vitro Model of Human Interneuron Development Reveals Temporal Dynamics of Cell Type Production and Maturation. Neuron 93:1035-1048.e5
Clark, Amander T; Gkountela, Sofia; Chen, Di et al. (2017) Primate Primordial Germ Cells Acquire Transplantation Potential by Carnegie Stage 23. Stem Cell Reports 9:329-341
Peng, Tao; Chanthaphavong, R Savanh; Sun, Sijie et al. (2017) Keratinocytes produce IL-17c to protect peripheral nervous systems during human HSV-2 reactivation. J Exp Med 214:2315-2329
Yao, Zizhen; Mich, John K; Ku, Sherman et al. (2017) A Single-Cell Roadmap of Lineage Bifurcation in Human ESC Models of Embryonic Brain Development. Cell Stem Cell 20:120-134
Tsai, Yu-Hwai; Nattiv, Roy; Dedhia, Priya H et al. (2017) In vitro patterning of pluripotent stem cell-derived intestine recapitulates in vivo human development. Development 144:1045-1055
Tsai, Yu-Hwai; Hill, David R; Kumar, Namit et al. (2016) LGR4 and LGR5 Function Redundantly During Human Endoderm Differentiation. Cell Mol Gastroenterol Hepatol 2:648-662.e8
Thomsen, Elliot R; Mich, John K; Yao, Zizhen et al. (2016) Fixed single-cell transcriptomic characterization of human radial glial diversity. Nat Methods 13:87-93

Showing the most recent 10 out of 54 publications