Neuronal depolarization and neurotransmitter release underlie some of the most fundamental components of normal physiology and the etiology of brain pathophysiology. There is a tremendous need for high temporal resolution measurements of neurotransmitter release and its modulation of brain neuronal networks. While there has been progress in measuring neuronal depolarization in vivo in small animals, the current overall methodology of deployment, excitation and measurement of signal from voltage sensitive dyes (VSDs) commonly entails craniotomy and other invasive measures, and thus is currently only practical in rodent studies.
We aim to develop a transformative brain imaging technique which will allow minimally invasive/non-invasive imaging of neuronal depolarization and related neurotransmitter release ultimately in the living human brain. While challenging methodologically, we believe that our team of multidisciplinary experts consisting of neuroscientists, neuropharmacologists, electrical and bioengineers, and brain imaging physicists and chemists, will be able to plan over a period of three years a practical and clear path to the development of such a potentially paradigm-shifting imaging technique. To do so, we propose three Aims.
Aim 1 is to develop voltage sensitive probes for sub-millisecond measurements of membrane potentials and action potentials of cortical neurons in humans and other primates in vivo.
Aim 2 will be to quantify highly temporally resolved neurotransmitter action with measures of lactate, pH, and redox potential changes in vivo. Finally, Aim 3 will pursue a pilot study of photoacoustic detection of neurotransmitter action by delivery of nanosecond pulses to intact skin and skull in response to changed absorption spectra of voltage or pH sensitive dyes. We hypothesize that we can also derive from these voltage depolarizations, regionally active neurotransmitter release, and through pharmacologic manipulation, help derive where the depolarizations have been modulated by neurotransmitters. This will allow understanding of depolarization waves that up to now have not been linked with neuropharmacology directly. Our approaches will be tested in the rodent brain and then translated into non-human primate brain. By the end of three years, we anticipate providing the evidence that it is feasible to carry out neurotransmitter modulation of neuroactivity, including neuronal depolarization, and to have developed a plan for building a brain imaging instrument to capture these events, enabling minimally-invasive procedures for transformative imaging of the human brain in health and disease.

Public Health Relevance

This R24 if successful will provide a transformative new method and device for in vivo human brain imaging of brain neuronal firing and neurotransmitter action at very high time resolution. This will for the first time measure human brain activity in vivo with nearly real time measures, enabling paradigm-shifting studies of normal brain physiology and neuropsychiatric disorders.

Agency
National Institute of Health (NIH)
Institute
National Institute of Mental Health (NIMH)
Type
Resource-Related Research Projects (R24)
Project #
1R24MH106083-01
Application #
8828420
Study Section
Special Emphasis Panel (ZMH1-ERB-C (09))
Program Officer
Farber, Gregory K
Project Start
2014-09-26
Project End
2017-06-30
Budget Start
2014-09-26
Budget End
2015-06-30
Support Year
1
Fiscal Year
2014
Total Cost
$497,799
Indirect Cost
$186,141
Name
Johns Hopkins University
Department
Radiation-Diagnostic/Oncology
Type
Schools of Medicine
DUNS #
001910777
City
Baltimore
State
MD
Country
United States
Zip Code
21218