The goal of the postdoctoral Mayo Cancer Genetic Epidemiology Training Program (MCGETP) renewal is to produce investigators capable of developing an independent academic career in the evolving arena of cancer research that transects the disciplines of genomics, epidemiology, statistical genetics and bio- and clinical informatics. This training will converge and integrate multiple disciplines, which is critical to met the challenges of bridging the laboratory-translational interface, and to stimulate improvements in cancer detection, prevention, and treatment. Mayo Clinic is a highly respected center for medical training, research, and patient care, and has proven to be an outstanding environment for nurturing such integrated training over the past 10 years of this training program. The clinic environment and medical record infrastructure provide unique opportunities to couple existing information on a well-annotated practice with genomic, molecular and pathology data on tens of thousands of patients, and to perform research that will inform the practice of personalized medicine. Further, the resources of the Mayo Clinic Comprehensive Cancer Center and the Center for Translational Science Activities are available to this program. We seek continuing support for the MCGETP to provide three-year interdisciplinary training experiences for three types of postdoctoral trainees (doctoral level individuals prepared in a) laboratory-based research, b) medicine, or c) epidemiology, statistical genetics, informatics). Two Advisory Committees composed of senior faculty and external advisors will provide oversight. The MCGETP will ensure an integrated didactic education through a specialized core curriculum;opportunities through additional intramural and extramural courses and workshops in cancer biology, epigenetics, genetic epidemiology, bioinformatics, statistical genetics;and an individualized mentoring program that includes development of original research for grant applications. Each trainee is also integrated into highly interactive multidisciplinary tumor working groups at Mayo to enhance their research experience. The co- mentoring structure for each trainee ensures that they receive the benefit of multiple research perspectives and opportunities. The base of 38 faculty/mentors include nationally and internationally known investigators in their respective fields, who have a track record of funding and demonstrated excellence in mentoring junior investigators. Evaluation of trainees is performed on a regular basis, and they are expected to generate a research grant proposal that would be suitable for submission for competitive funding. Thus, through the MCGETP, trainees will be prepared to combine laboratory-based genomics research with clinical and population sciences studies. In turn, this will address a major need for cancer investigators with genetic and molecular epidemiology expertise who can best exploit and integrate rapidly developing genomic and analytic technology for improved detection, prevention, and treatment of cancer.

Public Health Relevance

The postdoctoral Mayo Cancer Genetic Epidemiology Training Program (MCGETP) seeks to produce investigators capable of developing an independent academic career in the rapidly evolving arena of cancer research that transects the disciplines of genomics, epidemiology, statistical genetics, bioinformatics, and clinical informatics. MCGETP will address a major need for cancer investigators with genetic and molecular epidemiology expertise who can best exploit rapidly developing omic, bioinformatics, and analytic technology and complex data to improve our approaches to cancer prevention and care.

Agency
National Institute of Health (NIH)
Type
Education Projects (R25)
Project #
2R25CA092049-11
Application #
8664544
Study Section
Subcommittee B - Comprehensiveness (NCI)
Program Officer
Perkins, Susan N
Project Start
Project End
Budget Start
Budget End
Support Year
11
Fiscal Year
2014
Total Cost
Indirect Cost
Name
Mayo Clinic, Rochester
Department
Type
DUNS #
City
Rochester
State
MN
Country
United States
Zip Code
55905
Antwi, Samuel O; Steck, Susan E; Su, L Joseph et al. (2016) Carotenoid intake and adipose tissue carotenoid levels in relation to prostate cancer aggressiveness among African-American and European-American men in the North Carolina-Louisiana prostate cancer project (PCaP). Prostate 76:1053-66
Antwi, Samuel O; Oberg, Ann L; Shivappa, Nitin et al. (2016) Pancreatic cancer: associations of inflammatory potential of diet, cigarette smoking and long-standing diabetes. Carcinogenesis 37:481-90
(2016) Identification of four novel susceptibility loci for oestrogen receptor negative breast cancer. Nat Commun 7:11375
Tenenbaum, Jessica D; Avillach, Paul; Benham-Hutchins, Marge et al. (2016) An informatics research agenda to support precision medicine: seven key areas. J Am Med Inform Assoc 23:791-5
Jansen, Rick J; Fonseca-Williams, Sharon; Bamlet, William R et al. (2015) Detection of DNA damage in peripheral blood mononuclear cells from pancreatic cancer patients. Mol Carcinog 54:1220-6
Tan, Xiang-Lin; Bhattacharyya, Kalyan K; Dutta, Shamit K et al. (2015) Metformin suppresses pancreatic tumor growth with inhibition of NFκB/STAT3 inflammatory signaling. Pancreas 44:636-47
Antwi, Samuel O; Eckert, Elizabeth C; Sabaque, Corinna V et al. (2015) Exposure to environmental chemicals and heavy metals, and risk of pancreatic cancer. Cancer Causes Control 26:1583-91
Antwi, Samuel O; Steck, Susan E; Su, L Joseph et al. (2015) Dietary, supplement, and adipose tissue tocopherol levels in relation to prostate cancer aggressiveness among African and European Americans: The North Carolina-Louisiana Prostate Cancer Project (PCaP). Prostate 75:1419-35
Purrington, Kristen S; Slager, Susan; Eccles, Diana et al. (2014) Genome-wide association study identifies 25 known breast cancer susceptibility loci as risk factors for triple-negative breast cancer. Carcinogenesis 35:1012-9
Charbonneau, Bridget; Block, Matthew S; Bamlet, William R et al. (2014) Risk of ovarian cancer and the NF-κB pathway: genetic association with IL1A and TNFSF10. Cancer Res 74:852-61

Showing the most recent 10 out of 90 publications