The vacuolar ATPase is a large complex enzyme found in the endomembrane system of eucaryotic cells. It functions to acidify the interior of several organelles, e.g., lysosomes and secretory vesicles, and generates an electrochemical gradient to drive transport across the organellar membrane. We have characterized the ATPase in vacuolar membranes from Neurospora and have isolated the genes that encode three of the major subunits. The enzyme appears to have at least six additional subunits. The goals of this proposal are: (1) To isolate the other polypeptides which copurify with ATPase activity, obtain partial amino acid sequence, construct oligonucleotide probes, and isolate the corresponding genes. (2) To use genetics to determine the number of genes essential for synthesizing the vacuolar ATPase. (3) To examine the oligomeric structure of the ATPase by electron microscopy, using antibodies to map the location of several polypeptides. (4) To examine the chromosomal location, exon/intron structure, and the abundance and size of transcripts of vacuolar ATPase genes. Investigation of this enzyme is important because of the central role it plays in the function of many organelles. The uncoupling of ligands and receptors in endosomes, the packaging of neurotransmitters in secretory vesicles, and the hydrolytic action of enzymes in lysosomes all depend on the activity of the vacuolar ATPase. Furthermore, a vacuolar-type ATPase has been reported on the plasma membranes of osteoclasts, where it plays an important role in bone remodeling, and on the plasma membrane of some renal cells, where it plays a role in urinary acidification.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Education Projects (R25)
Project #
1R25GM058903-01
Application #
6107924
Study Section
Project Start
1999-04-01
Project End
2000-03-31
Budget Start
Budget End
Support Year
1
Fiscal Year
1999
Total Cost
Indirect Cost
Name
University of California Santa Cruz
Department
Type
DUNS #
City
Santa Cruz
State
CA
Country
United States
Zip Code
95064
Bohr, Tisha; Nelson, Christian R; Giacopazzi, Stefani et al. (2018) Shugoshin Is Essential for Meiotic Prophase Checkpoints in C. elegans. Curr Biol 28:3199-3211.e3
Asojo, Oluwatoyin A; Darwiche, Rabih; Gebremedhin, Selam et al. (2018) Heligmosomoides polygyrus Venom Allergen-like Protein-4 (HpVAL-4) is a sterol binding protein. Int J Parasitol 48:359-369
Bogdanoff, Walter A; Perez, Edmundo I; López, Tomás et al. (2018) Structural Basis for Escape of Human Astrovirus from Antibody Neutralization: Broad Implications for Rational Vaccine Design. J Virol 92:
Alcaide-Gavilán, Maria; Lucena, Rafael; Schubert, Katherine A et al. (2018) Modulation of TORC2 Signaling by a Conserved Lkb1 Signaling Axis in Budding Yeast. Genetics 210:155-170
Volden, Roger; Palmer, Theron; Byrne, Ashley et al. (2018) Improving nanopore read accuracy with the R2C2 method enables the sequencing of highly multiplexed full-length single-cell cDNA. Proc Natl Acad Sci U S A 115:9726-9731
Jimenez, Jorge; Chakraborty, Indranil; Del Cid, Anthony M et al. (2017) Five- and Six-Coordinated Silver(I) Complexes Derived from 2,6-(Pyridyl)iminodiadamantanes: Sustained Release of Bioactive Silver toward Bacterial Eradication. Inorg Chem 56:4784-4787
Byrne, Ashley; Beaudin, Anna E; Olsen, Hugh E et al. (2017) Nanopore long-read RNAseq reveals widespread transcriptional variation among the surface receptors of individual B cells. Nat Commun 8:16027
Knutson, Andrew Kek?pa'a; Egelhofer, Thea; Rechtsteiner, Andreas et al. (2017) Germ Granules Prevent Accumulation of Somatic Transcripts in the Adult Caenorhabditis elegans Germline. Genetics 206:163-178
Chakraborty, Indranil; Jimenez, Jorge; Mascharak, P K (2017) CO-Induced apoptotic death of colorectal cancer cells by a luminescent photoCORM grafted on biocompatible carboxymethyl chitosan. Chem Commun (Camb) 53:5519-5522
Duncan, Miles C; Herrera, Natalia G; Johnson, Kevin S et al. (2017) Bacterial internalization is required to trigger NIK-dependent NF-?B activation in response to the bacterial type three secretion system. PLoS One 12:e0171406

Showing the most recent 10 out of 120 publications