Replicative cellular senescence is a phenomenon of irreversible growth arrest triggered by the accumulation of a discrete number of cell divisions. The great majority of normal cell types from all vertebrate species examined display this response. It is becoming increasingly evident that what has classically been described as cellular senescence is a collection of interrelated states that can be triggered by distinct intrinsic and extrinsic stimuli. The underlying cause of senescence due to replicative exhaustion is telomere shortening. In addition, it is now apparent that many types of stress, reactive oxygen species, pharmacological agents, and even nutrient imbalances can trigger a senescence response. Activation of some oncogenes also induces senescence in normal cells, and recent data have implicated cellular senescence as an important in vivo tumor suppression mechanism. In contrast, the connections between cellular senescence and the aging of organisms are significantly more tenuous. The necessary first step is to distinguish senescent cells from the majority of healthy but quiescent cells found in normal tissues. We, and others, have recently developed a method based on the microscopic detection of DNA damage markers localized to telomeres, designated the `TIF'assay (for `telomere dysfunction-induced foci'). TIFs are a robust biomarker of telomere-initiated senescence, which we used to demonstrate a marked age-associated accumulation of senescent cells in normal primate tissues. This proposal is aimed to give us a better understanding of multiple cellular senescence processes, focusing on their roles in organismal aging.
Aim 1 will examine the in vivo occurrence of telomere-induced senescence in mouse, primate and human models, and probe the links between cellular senescence and pathways that functionally influence aging.
Aim 2 will extend recent studies linking genome-wide changes in chromatin structure with cellular senescence by developing new assays to assess in vivo states of heterochromatin in cells and tissues. These new biomarkers of cellular senescence will then be applied to the models developed in Aim 1.
Aim 3 will seek to discover what causes the age-dependent upregulation of the cyclin-dependent kinase inhibitor p16, an important effector implicated in regulating multiple senescent states.

Public Health Relevance

Replicative cellular senescence was discovered and first described as an irreversible growth arrest triggered by the accumulation of a discrete number of cell divisions. These findings generated two hypotheses regarding the significance of cellular senescence: that it contributes to aging, and that it suppresses cancer. Recent data have implicated cellular senescence as an important in vivo tumor suppression mechanism in a variety of human and mouse tissues. In contrast to tumor suppression, the connections between cellular senescence and the aging of organisms are significantly more tenuous. The necessary first step is to distinguish senescent cells from the majority of healthy but quiescent cells found in normal tissues. This proposal will develop new biomarkers of cellular senescence that will be applied in vivo investigate the occurrence of senescent cells in rodents, primates and humans. Mechanisms that lead to the generation of senescent cells will also be investigated, as well as the persistence of senescent cells.

Agency
National Institute of Health (NIH)
Institute
National Institute on Aging (NIA)
Type
Method to Extend Research in Time (MERIT) Award (R37)
Project #
5R37AG016694-15
Application #
8461620
Study Section
Cellular Mechanisms in Aging and Development Study Section (CMAD)
Program Officer
Velazquez, Jose M
Project Start
1999-04-01
Project End
2014-04-30
Budget Start
2013-06-01
Budget End
2014-04-30
Support Year
15
Fiscal Year
2013
Total Cost
$298,642
Indirect Cost
$114,295
Name
Brown University
Department
Biochemistry
Type
Schools of Medicine
DUNS #
001785542
City
Providence
State
RI
Country
United States
Zip Code
02912
Criscione, Steven W; De Cecco, Marco; Siranosian, Benjamin et al. (2016) Reorganization of chromosome architecture in replicative cellular senescence. Sci Adv 2:e1500882
Gravina, Silvia; Sedivy, John M; Vijg, Jan (2016) The dark side of circulating nucleic acids. Aging Cell 15:398-9
Waaijer, Mariëtte E C; Croco, Eleonora; Westendorp, Rudi G J et al. (2016) DNA damage markers in dermal fibroblasts in vitro reflect chronological donor age. Aging (Albany NY) 8:147-57
Borghesan, Michela; Fusilli, Caterina; Rappa, Francesca et al. (2016) DNA Hypomethylation and Histone Variant macroH2A1 Synergistically Attenuate Chemotherapy-Induced Senescence to Promote Hepatocellular Carcinoma Progression. Cancer Res 76:594-606
Longo, Valter D; Antebi, Adam; Bartke, Andrzej et al. (2015) Interventions to Slow Aging in Humans: Are We Ready? Aging Cell 14:497-510
Hofmann, Jeffrey W; Zhao, Xiaoai; De Cecco, Marco et al. (2015) Reduced expression of MYC increases longevity and enhances healthspan. Cell 160:477-88
Giampieri, Enrico; De Cecco, Marco; Remondini, Daniel et al. (2015) Active Degradation Explains the Distribution of Nuclear Proteins during Cellular Senescence. PLoS One 10:e0118442
Nelson, David M; McBryan, Tony; Jeyapalan, Jessie C et al. (2014) A comparison of oncogene-induced senescence and replicative senescence: implications for tumor suppression and aging. Age (Dordr) 36:9637
Hofmann, Jeffrey W; McBryan, Tony; Adams, Peter D et al. (2014) The effects of aging on the expression of Wnt pathway genes in mouse tissues. Age (Dordr) 36:9618
Gorbunova, Vera; Boeke, Jef D; Helfand, Stephen L et al. (2014) Human Genomics. Sleeping dogs of the genome. Science 346:1187-8

Showing the most recent 10 out of 23 publications