In the next 5-year phase of this R37 grant, we will continue our investigations in 2 of the three aims originally proposed.
The third Aim, is a new aim and outgrowth of the current trends In HIV research of Investigating the role of host factors in specific viral functions.
In Aim 1, we will continue the wori< on the RT determinants of dNTP selection and expand into determinants of mispair extension fidelity. We will further expand from our novel observation that the K65 residue plays a critical role in forcing the insertion of incorrect basepairs due to the interaction between the lysine side chain and the y phosphate of incoming dNTP. We will use two novel ways of improving the fidelity of HIV-1 RT variants in which we will either use dNTP analogs that do not have a negative charge on the y phosphate or remove the positive charge on the amino acid side chain by using unnatural amino acid residues. We believe that these two methods afford powerful means of testing the pivotal importance of this interaction to HIV-1 RT accuracy. We have also made a novel observation that certain amino acid substitutions and certain sequences in template-primer dnve the RT molecule to an unproductive, -2 position with respect to the templating base position. We will further explore and delineate the various conditions that facilitate a higher fidelity by displacing RT.
In Aim 2, we will continue our previous work on RT-IN complexes by co-crystallizing HIV-1 RT-IN complexes in collaboration with Dr. Steve Almo. When the structural information becomes available, we can carry out site-directed mutagenesis to disrupt residues in the interaction interface and carry out genetic protein-protein interaction assays and virological assays to determine the significance of the interaction.
In Aim 3, we will Investigate the role of host factors in HIV reverse transcription. We will examine the genes Implicated in reverse trancription by shRNA screens by Konig et al. The specific role of selected genes in reverse transcription will be confirmed by eliminating possible effects on entry and/or uncoating. First, we will develop an interactome of each hit via co-1.P. from both infected and uninfected cells to understand the pathways involved. Second, we will silence other members of the complexes thus identified for role in reverse transcription. Third, we will test whether the silencing of the 'hit's or their interacting partners will affect only HIV or also the related lenti- and retroviruses including SIVcpz, SIVmac, HIV-2, MuLV and RSV - to understand the wider significance of the proteins thus identified to retroviruses.

Public Health Relevance

We believe that the proposed wori

National Institute of Health (NIH)
National Institute of Allergy and Infectious Diseases (NIAID)
Method to Extend Research in Time (MERIT) Award (R37)
Project #
Application #
Study Section
Special Emphasis Panel (NSS)
Program Officer
Ussery, Michael A
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Albert Einstein College of Medicine
Schools of Medicine
United States
Zip Code
Garforth, Scott J; Lwatula, Chisanga; Prasad, Vinayaka R (2014) The lysine 65 residue in HIV-1 reverse transcriptase function and in nucleoside analog drug resistance. Viruses 6:4080-94
Prasad, Vinayaka R; Bukrinsky, Michael I (2014) New clues to understanding HIV nonprogressors: low cholesterol blocks HIV trans infection. MBio 5:e01396-14
Rao, Vasudev R; Neogi, Ujjwal; Eugenin, Eliseo et al. (2014) The gp120 protein is a second determinant of decreased neurovirulence of Indian HIV-1C isolates compared to southern African HIV-1C isolates. PLoS One 9:e107074
Hanna, Luke Elizabeth; Neogi, Ujjwal; Ranga, Udaykumar et al. (2014) Phylogenetic characterization of six full-length HIV-1 subtype C molecular clones from three patients: identification of rare subtype C strains containing two NF-?B motifs in the long terminal repeat. AIDS Res Hum Retroviruses 30:586-91
Mathew, Sheeba; Nguyen, Minh; Wu, Xuhong et al. (2013) INI1/hSNF5-interaction defective HIV-1 IN mutants exhibit impaired particle morphology, reverse transcription and integration in vivo. Retrovirology 10:66
Ramalingam, Dhivya; Duclair, Sonald; Datta, Siddhartha A K et al. (2011) RNA aptamers directed to human immunodeficiency virus type 1 Gag polyprotein bind to the matrix and nucleocapsid domains and inhibit virus production. J Virol 85:305-14
Garforth, Scott J; Domaoal, Robert A; Lwatula, Chisanga et al. (2010) K65R and K65A substitutions in HIV-1 reverse transcriptase enhance polymerase fidelity by decreasing both dNTP misinsertion and mispaired primer extension efficiencies. J Mol Biol 401:33-44
Drosopoulos, William C; Prasad, Vinayaka R (2010) The telomerase-specific T motif is a restrictive determinant of repetitive reverse transcription by human telomerase. Mol Cell Biol 30:447-59
Garforth, Scott J; Parniak, Michael A; Prasad, Vinayaka R (2008) Utilization of a deoxynucleoside diphosphate substrate by HIV reverse transcriptase. PLoS One 3:e2074