Although substantial progress has been made on understanding the mechanism of HIV-1 entry into cells, much less is known about the process of virus transmission in vivo. What structural and functional properties of the viral Env protein differentiate the transmitted virus from other variants and facilitate transmission across mucosal surfaces? In this application, we propose to characterize genetically and biologically HIV-1 virus populations isolated from both the donor and recipient immediately following a transmission event in a unique cohort of discordant couples in Zambia. These studies will provide a unique opportunity to investigate the virologic determinants of heterosexual transmission specified by the variable regions of gp120 in biologically relevant viral envelope genes using samples from a large, well-characterized discordant couple cohort that represents the predominant subtype (C) of HIV-1 worldwide. Our hypothesis is that the extreme genetic bottleneck that we have observed, which appears to select for viruses with more compact, neutralization sensitive envelope glycoproteins selects for a virus, which has biological properties that confer unique advantages for transmission and establishment of infection. Partners in concordantly positive couples, particularly those where both are infected by different viruses, are at high risk for superinfection and subsequent virus recombination. We hypothesize that risk of superinfection will depend on virus diversity, will be enhanced by acute infection in one partner, will reflect an inability to immunologically defend against the incoming virus, and that studies of these events will inform on the breadth of protection conferred by immunity to natural infection. For these studies we will follow prospectively, in both Rwanda and Zambia, both partners of couples where we have documented infection of the seronegative partner by a genetically unrelated virus from that in their spouse and monitor for superinfection. Specifically we will: 1. Determine which biological properties of subtype C newly transmitted variants could facilitate establishment of infection in a new host and correlate these with structural features of Env that characterize these isolates, 2. Determine whether a genetic bottleneck occurs in the genital compartment of subtype C infected donor partners or if there is a biological restriction of the transmitted virus population in the genital compartment of the recipients, and 3. Determine the frequency, kinetics and the virologic and immunologic ramifications of HIV superinfection in both partners following acute/early infection. The results of the proposed studies, which are aimed at characterizing the biological properties of newly infecting HIV-1, the origin of the genetic bottleneck observed in acutely infected individuals, and the details and consequences of HIV-1 superinfection, will enhance our understanding of the heterosexual transmission process and will yield novel information that is critical to the design and testing of globally effective vaccine candidates.

National Institute of Health (NIH)
National Institute of Allergy and Infectious Diseases (NIAID)
Method to Extend Research in Time (MERIT) Award (R37)
Project #
Application #
Study Section
AIDS Molecular and Cellular Biology Study Section (AMCB)
Program Officer
Sharma, Opendra K
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Emory University
Schools of Medicine
United States
Zip Code
Penezina, Oksana; Krueger, Neil X; Rodriguez-Chavez, Isaac R et al. (2014) Performance of a redesigned HIV Selectest enzyme-linked immunosorbent assay optimized to minimize vaccine-induced seropositivity in HIV vaccine trial participants. Clin Vaccine Immunol 21:391-8
Cavrois, Marielle; Neidleman, Jason; Santiago, Mario L et al. (2014) Enhanced fusion and virion incorporation for HIV-1 subtype C envelope glycoproteins with compact V1/V2 domains. J Virol 88:2083-94
Claiborne, Daniel T; Prince, Jessica L; Hunter, Eric (2014) A restriction enzyme based cloning method to assess the in vitro replication capacity of HIV-1 subtype C Gag-MJ4 chimeric viruses. J Vis Exp :
Carlson, Jonathan M; Schaefer, Malinda; Monaco, Daniela C et al. (2014) HIV transmission. Selection bias at the heterosexual HIV-1 transmission bottleneck. Science 345:1254031
Basu, Debby; Xiao, Peng; Ende, Zachary et al. (2014) Low antibody-dependent cellular cytotoxicity responses in Zambians prior to HIV-1 intrasubtype C superinfection. Virology 462-463:295-8
Deymier, Martin J; Claiborne, Daniel T; Ende, Zachary et al. (2014) Particle infectivity of HIV-1 full-length genome infectious molecular clones in a subtype C heterosexual transmission pair following high fidelity amplification and unbiased cloning. Virology 468-470:454-61
Murphy, Megan K; Yue, Ling; Pan, Ruimin et al. (2013) Viral escape from neutralizing antibodies in early subtype A HIV-1 infection drives an increase in autologous neutralization breadth. PLoS Pathog 9:e1003173
Yue, Ling; Prentice, Heather A; Farmer, Paul et al. (2013) Cumulative impact of host and viral factors on HIV-1 viral-load control during early infection. J Virol 87:708-15
Boeras, Debrah I; Luisi, Nicole; Karita, Etienne et al. (2011) Indeterminate and discrepant rapid HIV test results in couples' HIV testing and counselling centres in Africa. J Int AIDS Soc 14:18
Price, Matt A; Wallis, Carole L; Lakhi, Shabir et al. (2011) Transmitted HIV type 1 drug resistance among individuals with recent HIV infection in East and Southern Africa. AIDS Res Hum Retroviruses 27:5-12

Showing the most recent 10 out of 18 publications