The specific arrangement of proteins in the contact surface between the T cell and the APC is known as the immunological synapse. The exact function of the synapse is not clear but it has been proposed to function in the process of TCR signaling and also for TCR downregulation. Here we propose a model that suggests that there is a complex relationship between signaling, full receptor phosphorylation and downregulation. Recruitment to the center of the synapse facilitates full receptor phosphorylation, and fully phosphorylated receptors are targeted for degradation. The model also suggests that receptors that are unable to be recruited to the center of the synapse become only partially phosphorylated and are recycled to the plasma membrane after dephosphorylation. In this application, we propose a series of experiments to test this hypothesis using state of the art imaging techniques. Specifically, in Specific Aim # 1, we propose to analyze the relationship between synapse formation, receptor phosphorylation and receptor degradation.
In Specific Aim #2, we propose to determine the site ofphosphorylation of fully phosphorylated versus partially phosphorylated receptors.
In Specific Aim #3, we propose to examine the role of receptor downregulation in thymocyte signaling. Lastly, in Specific Aim #4, we propose to examine the role of CD28 and CD2 in TCR recycling and degradation.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Method to Extend Research in Time (MERIT) Award (R37)
Project #
5R37AI057966-09
Application #
8230607
Study Section
Special Emphasis Panel (NSS)
Program Officer
Mallia, Conrad M
Project Start
2004-03-01
Project End
2014-02-28
Budget Start
2012-03-01
Budget End
2013-02-28
Support Year
9
Fiscal Year
2012
Total Cost
$277,859
Indirect Cost
$57,336
Name
Washington University
Department
Pathology
Type
Schools of Medicine
DUNS #
068552207
City
Saint Louis
State
MO
Country
United States
Zip Code
63130
Hu, Jiancheng; Stites, Edward C; Yu, Haiyang et al. (2013) Allosteric activation of functionally asymmetric RAF kinase dimers. Cell 154:1036-46
Taylor, Susan S; Shaw, Andrey; Hu, Jiancheng et al. (2013) Pseudokinases from a structural perspective. Biochem Soc Trans 41:981-6
Zhao, Jianping; Bruck, Serawit; Cemerski, Saso et al. (2013) CD2AP links cortactin and capping protein at the cell periphery to facilitate formation of lamellipodia. Mol Cell Biol 33:38-47
Srivatsan, Subhashini; Swiecki, Melissa; Otero, Karel et al. (2013) CD2-associated protein regulates plasmacytoid dendritic cell migration, but is dispensable for their development and cytokine production. J Immunol 191:5933-40
Le Borgne, Marie; Filbert, Erin L; Shaw, Andrey S (2013) Kinase suppressor of Ras 1 is not required for the generation of regulatory and memory T cells. PLoS One 8:e57137
Filbert, Erin L; Le Borgne, Marie; Lin, Joseph et al. (2012) Stathmin regulates microtubule dynamics and microtubule organizing center polarization in activated T cells. J Immunol 188:5421-7
Markiewicz, Mary A; Wise, Erica L; Buchwald, Zachary S et al. (2012) RAE1ýý ligand expressed on pancreatic islets recruits NKG2D receptor-expressing cytotoxic T cells independent of T cell receptor recognition. Immunity 36:132-41
Filbert, Erin L; Nguyen, Anhco; Markiewicz, Mary A et al. (2010) Kinase suppressor of Ras 1 is required for full ERK activation in thymocytes but not for thymocyte selection. Eur J Immunol 40:3226-34
Lin, Joseph; Hou, Kirk K; Piwnica-Worms, Helen et al. (2009) The polarity protein Par1b/EMK/MARK2 regulates T cell receptor-induced microtubule-organizing center polarization. J Immunol 183:1215-21
Markiewicz, Mary A; Wise, Erica L; Buchwald, Zachary S et al. (2009) IL-12 enhances CTL synapse formation and induces self-reactivity. J Immunol 182:1351-61

Showing the most recent 10 out of 12 publications