We seek to understand the molecular mechanism underlying the tissue degeneration characteristic of human amyloid diseases and to use this insight to develop new therapeutic strategies and diagnostics to ameliorate the human amyloidoses.
In specific aim 1, we focus on understanding why aging is such an important risk factor for the onset of the transthyretin amyloidoses. All indications are that amyloid diseases do not result from slow, progressive accumulation of amyloid fibrils over a lifespan. Instead, an aging-related physiological change appears to trigger their onset. Since transthyretin is synthesized and degraded by the liver, and since liver transplantation from an amyloid patient into a liver cancer patient initiates rapid amyloidosis in the latter, we are confident that studying liver physiology in amyloidosis, and normal young and old donors will reveal important clues about the etiology of this disease.
In specific aim 2, we utilize first-in-class amyloidogenesis inhibitors to test the amyloid hypothesis in two placebo-controlled human clinical trials. We will also fractionate specific aggregate morphologies, arrest these intermediates from further assembly and assess their toxicity. Additionally, new technology will be developed to characterize amyloid deposits in the context of the oxidative-metabolite pool, which could contribute to these maladies.
In specific aim 3, we will continue to develop new therapeutic strategies centered around the discovery of secretion modulators, compounds that make cells less permissive to the secretion of highly destabilized amyloidogenic proteins. Unlike the transthyretin-disease specific native state kinetic stabilizers discovered in the last funding period, these compounds should be useful in treating numerous amyloid diseases. Lastly, we seek to develop positron emission tomography (PET) diagnostics to image the earliest aggregates appearing in amyloid diseases in living subjects to enable treatment to begin before substantial tissue degeneration occurs.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Method to Extend Research in Time (MERIT) Award (R37)
Project #
5R37DK046335-21
Application #
8322507
Study Section
Macromolecular Structure and Function B Study Section (MSFB)
Program Officer
Wright, Daniel G
Project Start
1993-05-01
Project End
2016-07-31
Budget Start
2012-08-01
Budget End
2013-07-31
Support Year
21
Fiscal Year
2012
Total Cost
$581,479
Indirect Cost
$274,579
Name
Scripps Research Institute
Department
Type
DUNS #
781613492
City
La Jolla
State
CA
Country
United States
Zip Code
92037
Plate, Lars; Cooley, Christina B; Chen, John J et al. (2016) Small molecule proteostasis regulators that reprogram the ER to reduce extracellular protein aggregation. Elife 5:
Ankarcrona, M; Winblad, B; Monteiro, C et al. (2016) Current and future treatment of amyloid diseases. J Intern Med 280:177-202
Morgan, Gareth J; Kelly, Jeffery W (2016) The Kinetic Stability of a Full-Length Antibody Light Chain Dimer Determines whether Endoproteolysis Can Release Amyloidogenic Variable Domains. J Mol Biol 428:4280-4297
Baranczak, Aleksandra; Kelly, Jeffery W (2016) A current pharmacologic agent versus the promise of next generation therapeutics to ameliorate protein misfolding and/or aggregation diseases. Curr Opin Chem Biol 32:10-21
Lim, Kwang Hun; Dasari, Anvesh K R; Hung, Ivan et al. (2016) Solid-State NMR Studies Reveal Native-like β-Sheet Structures in Transthyretin Amyloid. Biochemistry 55:5272-8
Lim, Kwang Hun; Dasari, Anvesh K R; Hung, Ivan et al. (2016) Structural Changes Associated with Transthyretin Misfolding and Amyloid Formation Revealed by Solution and Solid-State NMR. Biochemistry 55:1941-4
Kurian, Sunil M; Novais, Marta; Whisenant, Thomas et al. (2016) Peripheral Blood Cell Gene Expression Diagnostic for Identifying Symptomatic Transthyretin Amyloidosis Patients: Male and Female Specific Signatures. Theranostics 6:1792-809
Cho, Younhee; Baranczak, Aleksandra; Helmke, Stephen et al. (2015) Personalized medicine approach for optimizing the dose of tafamidis to potentially ameliorate wild-type transthyretin amyloidosis (cardiomyopathy). Amyloid 22:175-80
Genereux, Joseph C; Qu, Song; Zhou, Minghai et al. (2015) Unfolded protein response-induced ERdj3 secretion links ER stress to extracellular proteostasis. EMBO J 34:4-19
Eisele, Yvonne S; Monteiro, Cecilia; Fearns, Colleen et al. (2015) Targeting protein aggregation for the treatment of degenerative diseases. Nat Rev Drug Discov 14:759-80

Showing the most recent 10 out of 34 publications