Congenital hyperinsulinism (HI) is the most frequent cause of persistent hypoglycemia in infants and children. Children with HI are at high risk of seizures and permanent brain damage and treatment of their hypoglycemia is extremely difficult. Recent work has shown that HI is associated with genetic defects in the pathways regulating beta-cell insulin secretion. Although 9 such loci have been found, many children with HI have no identifiable mutation of these genes. This includes one-third of diffuse HI cases that require pancreatectomy and half of cases that are responsive to medical treatment with diazoxide. Our hypothesis is that hyperinsulinism in these groups of children involves both novel molecular defects of known loci, as well as, previously unrecognized new genetic loci. The long-term goals of the research are to identify genotype- phenotype correlations in these disorders to guide diagnosis and treatment and to uncover new forms of congenital hyperinsulinism. A i m i will extend and expand studies of the novel genetic locus for hyperinsulinism in the historically-important dominant HI family reported by McQuarrie in 1954. Clinical phenotyping, linkage analysis, and next-gen sequencing methods have identified HK1 as a likely candidate gene. This will be confirmed by recruitment of additional pedigrees and by functional assays.
Aim 2 will extend the search for defects in novel candidate genes in our large series of children with diazoxide responsive hyperinsulinism that have no identifiable mutation. We will seek to identify either post-zygotic mutations of known loci or novel additional loci using targeted next-gen sequencing methods.
Aim 3 will continue our efforts to define the mechanisms of molecular defects in children who fail to respond to diazoxide and require pancreatectomy. We will search for novel cryptic or mosaic mutations of the two adjacent genes on l i p that are responsible for most cases of this form of HI: ABCC8/SUR1 and KCNJ11/Kir6.2. This will include functional testing of insulin release and molecular analysis of cultured islets from patients undergoing surgery to identify post-zygotic, mosaic mutations;mutations in non-coding regions, and microRNA sites;or epigenetic methylation defects.

Public Health Relevance

This translational research project seeks to define the molecular causes of congenital hyperinsulinemic hypoglycemia (HI). Novel candidate genes will be sought using next-gen DNA sequencing and advanced micro-methods to study pancreatic islets from children requiring pancreatectomy. The results will improve the treatment of children with HI and provide new insight into regulation of insulin secretion in normal humans.

National Institute of Health (NIH)
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Method to Extend Research in Time (MERIT) Award (R37)
Project #
Application #
Study Section
No Study Section (in-house review) (NSS)
Program Officer
Leschek, Ellen W
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Children's Hospital of Philadelphia
United States
Zip Code
Li, Changhong; Ackermann, Amanda M; Boodhansingh, Kara E et al. (2017) Functional and Metabolomic Consequences of KATP Channel Inactivation in Human Islets. Diabetes 66:1901-1913
Barrosse-Antle, Mary; Su, Chang; Chen, Pan et al. (2017) A severe case of hyperinsulinism due to hemizygous activating mutation of glutamate dehydrogenase. Pediatr Diabetes 18:911-916
De Leon, Diva D; Stanley, Charles A (2017) Congenital Hypoglycemia Disorders: New Aspects of Etiology, Diagnosis, Treatment and Outcomes: Highlights of the Proceedings of the Congenital Hypoglycemia Disorders Symposium, Philadelphia April 2016. Pediatr Diabetes 18:3-9
Ferrara, Christine T; Boodhansingh, Kara E; Paradies, Eleonora et al. (2017) Novel Hypoglycemia Phenotype in Congenital Hyperinsulinism Due to Dominant Mutations of Uncoupling Protein 2. J Clin Endocrinol Metab 102:942-949
Kalish, Jennifer M; Boodhansingh, Kara E; Bhatti, Tricia R et al. (2016) Congenital hyperinsulinism in children with paternal 11p uniparental isodisomy and Beckwith-Wiedemann syndrome. J Med Genet 53:53-61
Bhatti, Tricia R; Ganapathy, Karthik; Huppmann, Alison R et al. (2016) Histologic and Molecular Profile of Pediatric Insulinomas: Evidence of a Paternal Parent-of-Origin Effect. J Clin Endocrinol Metab 101:914-22
Stanley, Charles A (2016) Perspective on the Genetics and Diagnosis of Congenital Hyperinsulinism Disorders. J Clin Endocrinol Metab 101:815-26
Martin, Gregory M; Rex, Emily A; Devaraneni, Prasanna et al. (2016) Pharmacological Correction of Trafficking Defects in ATP-sensitive Potassium Channels Caused by Sulfonylurea Receptor 1 Mutations. J Biol Chem 291:21971-21983
Lord, Katherine; Radcliffe, Jerilynn; Gallagher, Paul R et al. (2015) High Risk of Diabetes and Neurobehavioral Deficits in Individuals With Surgically Treated Hyperinsulinism. J Clin Endocrinol Metab 100:4133-9
Stanescu, Diana E; Hughes, Nkecha; Patel, Puja et al. (2015) A novel mutation in GATA6 causes pancreatic agenesis. Pediatr Diabetes 16:67-70

Showing the most recent 10 out of 30 publications