This request for a five year extension of the MERIT award continues to exploit mouse models previously developed under the auspices of this grant. Having demonstrated that Mre11 complex-dependent DNA damage responses mitigate the oncogenic potential of oxidative and oncogene induced genotoxic stress, we will focus on the type(s) of DNA alerations that ensue from oncogene activation. Also based on findings obtained since the last review, we will examine genetic interactions between the Mre11 complex and Brca1 and lnk4a-p19Arf. We will extend our analysis of DNA repair at by examining the interplay of the Ku heterodimer and the Mre11 complex at DNA double strand breaks ends, testing the hypothesis that the enzymes involved in the processing of oxidative lesions such as those caused by ionizing radiation and radiomimetic compounds enhance the efficiency of both HR and NHEJ. For this issue, yeast and mouse models have been established. Finally, we continue our focus on the mechanisms of DNA damage signaling and ATM activation through the analysis of NBS1 mutants in which the Mre11 interaction interface is altered. These mice, Nbs1 mid mice, are unique in several respects and provide novel context in which mechanisms of DNA damage signaling can be illuminated. Complementing this effort, we will also define the minimal Nbs1 to test the hypothesis that modulation of the Mre11 dimer interface is the the critical function of Nbs1, and that ATM activation is at least partially mediated by protein domains on Mre11. Given the importance of the Mre11 complex in tumor suppression, meiosis, and development of the immune system, the research program proposed herein is highly significant with the potential to illuminate the functional impact of the Mre11 complex on multiple aspects of the DNA damage response network.

Public Health Relevance

We address the functions of a central DNA damage response component, the Mre11 complex. This complex has been implicated in human syndromes associated with increased risk of malignancy, and has also found to be defective in sporadic cancers. The experiments described in this application examine the Mre11 complex and have the potential to provide insights regarding the mechanisms underlying cancer predisposition.

National Institute of Health (NIH)
National Institute of General Medical Sciences (NIGMS)
Method to Extend Research in Time (MERIT) Award (R37)
Project #
Application #
Study Section
Special Emphasis Panel (NSS)
Program Officer
Janes, Daniel E
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Sloan-Kettering Institute for Cancer Research
Research Institutes
New York
United States
Zip Code
Henssen, Anton G; Reed, Casie; Jiang, Eileen et al. (2017) Therapeutic targeting of PGBD5-induced DNA repair dependency in pediatric solid tumors. Sci Transl Med 9:
Kim, Jun Hyun; Grosbart, Malgorzata; Anand, Roopesh et al. (2017) The Mre11-Nbs1 Interface Is Essential for Viability and Tumor Suppression. Cell Rep 18:496-507
Inagaki, Akiko; Roset, Ramon; Petrini, John H J (2016) Functions of the MRE11 complex in the development and maintenance of oocytes. Chromosoma 125:151-62
Asai, Takashi; Hatlen, Megan A; Lossos, Chen et al. (2016) Generation of a novel, multi-stage, progressive, and transplantable model of plasma cell neoplasms. Sci Rep 6:22760
Piscuoglio, Salvatore; Ng, Charlotte Ky; Murray, Melissa et al. (2016) Massively parallel sequencing of phyllodes tumours of the breast reveals actionable mutations, and TERT promoter hotspot mutations and TERT gene amplification as likely drivers of progression. J Pathol 238:508-18
Rocha, Pedro P; Raviram, Ramya; Fu, Yi et al. (2016) A Damage-Independent Role for 53BP1 that Impacts Break Order and Igh Architecture during Class Switch Recombination. Cell Rep 16:48-55
Balestrini, Alessia; Nicolas, Laura; Yang-Lott, Katherine et al. (2016) Defining ATM-Independent Functions of the Mre11 Complex with a Novel Mouse Model. Mol Cancer Res 14:185-95
Hohl, Marcel; Kocha?czyk, Tomasz; Tous, Cristina et al. (2015) Interdependence of the rad50 hook and globular domain functions. Mol Cell 57:479-91
Sarek, Grzegorz; Vannier, Jean-Baptiste; Panier, Stephanie et al. (2015) TRF2 recruits RTEL1 to telomeres in S phase to promote t-loop unwinding. Mol Cell 57:622-35
Katyal, Sachin; Lee, Youngsoo; Nitiss, Karin C et al. (2014) Aberrant topoisomerase-1 DNA lesions are pathogenic in neurodegenerative genome instability syndromes. Nat Neurosci 17:813-21

Showing the most recent 10 out of 23 publications