Myocrdial biology has been transformed by recognition of the role played by cardiac progenitor cells (CPC) in repair and regeneration following pathological injury as well as their participation in normal cardiac homoestsis, remodeling, and aging. The initial period of this MERIT award focused upon two key regulatory proteins that our group identified as key players in CPC biology: Notch and nucleostemin. Since our initial descriptions of these signaling proteins in the myocardial context both have been studied and integrated into the fabric of cardiovascular literature. This MERIT award extension period will take our understanding of Notch and nucleostemin to a higher level by defining connections between these molecules, canonical pathways in myocardial regulatory signaling, and involvement in the biology of CPC. The significance of this proposal is novel information that can be applied directly toward the manipulation of CPC to enhance myocardial repair and regeneration as well as understanding pathological mechanisms resulting from CPC dysfunction. Innovative aspects of this proposal include the use of unique reagents to manipulate Notch and nucleostemin activity through use of inducible constructs, silencing vectors, and observation of activity through genetically engineered reporters both in cultured cells and transgenic mice.
Specific aims are 1) Notch signaling potentiates cardiac progenitor differentiation into cardiac lineages in vitro and in vivo, 2) Notch signaling facilitates repair and regeneration of damaged mouse myocardium in vivo, S) Pim-1 mediated c-Myc stabilization induces nucleostemin that enhances regenerative potential and survival of cardiac progenitor cells, 4) nucleostemin regulates stem and progenitor cell pluripotency, and 5) elevated nucleostemin expression triggers hypertrophic signaling and enhances regenerative potential in the heart. The impact of the proposal will be advancing the use, manipulation, and control of CPC biology to facilitate myocardial reparative processes as well as explaining the underlying biology of myocardial responses to injury, adaptive remodeling, and aging. As cardiovascular stem cell biology enters the clinical arena it is essential to acquire mechanistic understanding to achieve optimal results.

Public Health Relevance

Cardiovascular disease remains a major cause of morbidity and mortality in the United States and places a substantial economic burden upon society. This proposal seeks to understand mechanisms responsible for repair and regeneration of the damaged heart that are by nature not designed to replace acute injuries. Successful completion of the proposed aims will provide significant insight for how reparative and regenerative processes will successfully be implemented as clinically-relevant treatments for heart disease.

National Institute of Health (NIH)
National Heart, Lung, and Blood Institute (NHLBI)
Method to Extend Research in Time (MERIT) Award (R37)
Project #
Application #
Study Section
Special Emphasis Panel (NSS)
Program Officer
Adhikari, Bishow B
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
San Diego State University
Schools of Arts and Sciences
San Diego
United States
Zip Code
Hariharan, Nirmala; Sussman, Mark A (2014) Pin1: a molecular orchestrator in the heart. Trends Cardiovasc Med 24:256-62
Gaetani, Roberto; Feyen, Dries A M; Doevendans, Pieter A et al. (2014) Different types of cultured human adult cardiac progenitor cells have a high degree of transcriptome similarity. J Cell Mol Med 18:2147-51
Toko, Haruhiro; Hariharan, Nirmala; Konstandin, Mathias H et al. (2014) Differential regulation of cellular senescence and differentiation by prolyl isomerase Pin1 in cardiac progenitor cells. J Biol Chem 289:5348-56
Khan, Mohsin; Mohsin, Sadia; Toko, Haruhiro et al. (2014) Cardiac progenitor cells engineered with *ARKct have enhanced *-adrenergic tolerance. Mol Ther 22:178-85
Siddiqi, Sailay; Sussman, Mark A (2014) The heart: mostly postmitotic or mostly premitotic? Myocyte cell cycle, senescence, and quiescence. Can J Cardiol 30:1270-8
McGregor, Michael; Hariharan, Nirmala; Joyo, Anya Y et al. (2014) CENP-A is essential for cardiac progenitor cell proliferation. Cell Cycle 13:739-48
Mohsin, Sadia; Wu, Joseph C; Sussman, Mark A (2014) Predicting the future with stem cells. Circulation 129:136-8
Hariharan, Nirmala; Sussman, Mark A (2014) Stressing on the nucleolus in cardiovascular disease. Biochim Biophys Acta 1842:798-801
Völkers, Mirko; Doroudgar, Shirin; Nguyen, Nathalie et al. (2014) PRAS40 prevents development of diabetic cardiomyopathy and improves hepatic insulin sensitivity in obesity. EMBO Mol Med 6:57-65
Anderson, Mark E; Goldhaber, Joshua; Houser, Steven R et al. (2014) Embryonic stem cell-derived cardiac myocytes are not ready for human trials. Circ Res 115:335-8

Showing the most recent 10 out of 40 publications