Spinocerebellar ataxia type 1 (SCA1) is one of nine fatal inherited neurodegenerative diseases caused by expansion of an inframe CAG trinucleotide repeat. Each repeat tract encodes a stretch of glutamine residues in the affected protein, in the case of SCA1 the protein is ataxin-1 (ATXN1). Symptoms of SCA1 include loss of motor coordination and balance, slurred speech, swallowing difficulty, spasticity, and some cognitive impairment. A characteristic feature of SCA1 pathology is atrophy and eventual loss of Purkinje cells from the cerebellar cortex. Like many neurodegenerative disorders, SCA1 is typically a late onset disease suggesting that physiological changes due to aging contribute to the onset of the disease. There is currently no effective treatment. Thus, identifying signaling pathways and cellular mediators of SCA1 onset and progression remain a major challenge in the search for therapeutics and is the focus of the research outlined in this application for continued support. )

Public Health Relevance

We hypothesize that distinct cellular pathways underlie the two stages of SCA1 disease. 1) The S776/RBM17-mediated disease initiation early progression (pathogenesis), and 2) polyglutamine, age-related late progression. The long-term goal of this work is to use information obtained about these pathways to identify novel avenues for therapeutic development. )

National Institute of Health (NIH)
National Institute of Neurological Disorders and Stroke (NINDS)
Method to Extend Research in Time (MERIT) Award (R37)
Project #
Application #
Study Section
Cellular and Molecular Biology of Neurodegeneration Study Section (CMND)
Program Officer
Gwinn, Katrina
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Minnesota Twin Cities
Schools of Medicine
United States
Zip Code
Nelson, David L; Orr, Harry T; Warren, Stephen T (2013) The unstable repeats--three evolving faces of neurological disease. Neuron 77:825-43
Ebner, Blake A; Ingram, Melissa A; Barnes, Justin A et al. (2013) Purkinje cell ataxin-1 modulates climbing fiber synaptic input in developing and adult mouse cerebellum. J Neurosci 33:5806-20
Orr, Harry T (2012) SCA1-phosphorylation, a regulator of Ataxin-1 function and pathogenesis. Prog Neurobiol 99:179-85
Gehrking, Kristin M; Andresen, J Michael; Duvick, Lisa et al. (2011) Partial loss of Tip60 slows mid-stage neurodegeneration in a spinocerebellar ataxia type 1 (SCA1) mouse model. Hum Mol Genet 20:2204-12
Fryer, John D; Yu, Peng; Kang, Hyojin et al. (2011) Exercise and genetic rescue of SCA1 via the transcriptional repressor Capicua. Science 334:690-3
Jafar-Nejad, Paymaan; Ward, Christopher S; Richman, Ronald et al. (2011) Regional rescue of spinocerebellar ataxia type 1 phenotypes by 14-3-3epsilon haploinsufficiency in mice underscores complex pathogenicity in neurodegeneration. Proc Natl Acad Sci U S A 108:2142-7
Crespo-Barreto, Juan; Fryer, John D; Shaw, Chad A et al. (2010) Partial loss of ataxin-1 function contributes to transcriptional dysregulation in spinocerebellar ataxia type 1 pathogenesis. PLoS Genet 6:e1001021
Duvick, Lisa; Barnes, Justin; Ebner, Blake et al. (2010) SCA1-like disease in mice expressing wild-type ataxin-1 with a serine to aspartic acid replacement at residue 776. Neuron 67:929-35
Zoghbi, Huda Y; Orr, Harry T (2009) Pathogenic mechanisms of a polyglutamine-mediated neurodegenerative disease, spinocerebellar ataxia type 1. J Biol Chem 284:7425-9
Carlson, Kerri M; Andresen, J Michael; Orr, Harry T (2009) Emerging pathogenic pathways in the spinocerebellar ataxias. Curr Opin Genet Dev 19:247-53

Showing the most recent 10 out of 55 publications