Each year in the United States, 5-20% of the population display symptoms of infection with the influenza virus. More than 110,000 of these persons are hospitalized and about 36,000 die from complications. While the spread of infection is generally avoidable through immunization, vaccine may be in short supply, logistics may limit distribution, compliance and lack of concern limit the immunized population and the vaccines are not as efficacious in the very old and very young. This year, a highly virulent avian influenza strain, designated H5N1, has spread rapidly throughout Asia and into Europe. Reports of human infections with H5N1 have increased the concern that this strain, or a recombinant with a virus that commonly infects humans, may expand its host range to infect humans and result in a global pandemic. A moderate pandemic could kill more than 30 million people around the world. A vaccine could be available within six months of recognition of a pandemic. However, influenza vaccine production is limited - only 300 million doses can be manufactured worldwide due to the difficulty in cultivating virus and capacity will take years to expand. Further, in the event of any widespread disease, rapid distribution to the population, insufficient healthcare personnel to administer the vaccine, lack of compliance due to needlestick phobia, and other issues may result in a poorly immunized population. The research proposed by Rocky Mountain Biosystems, Inc. in this application will demonstrate an innovative solution to achieve an immunized, protected population, addressing issues of limited supply, lack of access and compliance. The Self Administered Vaccination Electromechanical (SAVE) device gently and quickly reduces the stratum corneum, administers efficacious and consistent amounts of vaccine in minutes, and avoids creation of """"""""sharps"""""""" that constitute biohazardous waste. The device is designed to increase the efficacy of drugs and vaccines, while reducing dosage and extending vaccine supplies. The device is small, inexpensive, self-administrable and can be stockpiled for rapid deployment in the case of a pandemic. The device is expected to 1) extend the vaccine supply as much as 20-fold by adaptation to the more efficient transcutaneous route of vaccine administration, 2) greatly improve compliance through self-administration without needles, and 3) be capable of rapid deployment to the populace. Furthermore, SAVE's transcutaneous delivery is expected to enhance cellular immunity versus intramuscular (IM) inoculation, potentially improving immunity in the very young and old. The SAVE technology may also extend the benefits of transdermal drug delivery to new drugs, such as the growing number of macromolecule drugs and fragile protein or peptide bond biopharmaceuticals. In this proposal, the investigators propose to build pre-clinical prototypes of the patch and test it in vitro and in vivo in a swine model, as well as testing impedance in humans. ? ? ?

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Small Business Innovation Research Grants (SBIR) - Phase I (R43)
Project #
1R43AI071630-01A1
Application #
7272238
Study Section
Special Emphasis Panel (ZRG1-BST-Z (10))
Program Officer
Cho, David
Project Start
2007-04-01
Project End
2009-03-31
Budget Start
2007-04-01
Budget End
2008-03-31
Support Year
1
Fiscal Year
2007
Total Cost
$299,441
Indirect Cost
Name
Rocky Mountain Biosystems, Inc.
Department
Type
DUNS #
140454997
City
Wheat Ridge
State
CO
Country
United States
Zip Code
80033