Fluorescence based techniques play an essential role in modern cell biology and biomedical research. Further development of these techniques has been hindered by the lack of suitable fluorescent probes. To overcome this challenge, various fluorescent nanoparticles have been developed. Among those, conjugated polymer dots (Pdots) exhibited superior properties such as high brightness, fast emission rate, and excellent photostability. However, a severe drawback associated with Pdots is their broad emission spectra, which significantly limit their usefulness in practical applications. This proposal describes the refinement of a new class of Pdots that emit at different wavelengths with narrow spectral bandwidth. To achieve this goal, we propose the following aims: (1) Develop multicolor bright polymer dots with emission bandwidth FWHM that is comparable to or less than 40 nm. Here, we will carry out various spectroscopic techniques to characterize the Pdot properties such as absorption cross section, emission bandwidth, fluorescence quantum yield, photostability, and fluorescence lifetime. Single-particle fluorescence imaging will also be performed to provide side-by-side brightness comparisons on Pdots versus inorganic quantum dots (Qdots) (2) Optimize nanoparticle surface properties to reduce nonspecific labeling. Here, to examine nonspecific labeling of Pdots, we will use a range of techniques, including gel electrophoresis, dynamic laser scattering, affinity chromatography, flow cytometry, and fluorescence spectroscopy/imaging. (3) Demonstrate multiplex detection of biomolecules in cellular environments. Here, we will use the bright, narrow-band Pdots for multiplex detection of biomolecules in cellular environments. Specifically, flow cytometry and fluorescence imaging will be performed to evaluate the labeling specificity and compare fluorescence brightness of the labeled targets. Reliable protocols will be established for simultaneous labeling of three or more cellular targets with multicolor Pdots. This will lay the foundation of applying these bright, narrow-band Pdots for multiplex detection and biological imaging.

Public Health Relevance

Fluorescence based techniques play an essential role in modern cell biology and biomedical research as well as in various clinical diagnostic assays. This proposal aims to develop a new class of fluorescent probes that should offer significant performance improvements over traditional fluorescent dyes and nanoparticles. When successfully developed, this new probe will find broad use in biomedical research and clinical diagnostics.

Agency
National Institute of Health (NIH)
Type
Small Business Innovation Research Grants (SBIR) - Phase I (R43)
Project #
1R43GM109564-01
Application #
8646764
Study Section
Special Emphasis Panel (ZRG1)
Program Officer
Friedman, Fred K
Project Start
Project End
Budget Start
Budget End
Support Year
1
Fiscal Year
2014
Total Cost
Indirect Cost
Name
Lamprogen, Inc.
Department
Type
DUNS #
City
Seattle
State
WA
Country
United States
Zip Code
98115