The objective of this project is to develop an innovative, accurate, and low-cost technology for bedside continuous (vs. intermittent) monitoring of endotracheal tube (ETT) positioning. The new ETT malposition detector (ET-MD) uses automated analysis of breath sounds and will be able to detect bronchial intubation and extubation (tube slippage into the bronchus or out of the trachea, respectively). Broncheal intubation may occur due to tube manipulation or patient movement and may lead to significant hypoxia and atelectasis (and possibly barotrauma and pneumothorax of the ventilated lung). Although extubation may become clinically apparent after some time, instant recognition can help avoid hypoxia. The ET-MD operation exploits the physics principle of the dependence of breath sounds on lung ventilation. There are two essential ET-MD components: 1) Acoustic sensors and 2) Computational and display module that analyzes acoustic signals and reports relevant metrics indicative of ETT location. We propose to construct and test a prototype under likely use conditions. Here, effects of room noise, adventitious sounds, and sensor positioning errors will be investigated in animals. In addition, the device will be tested in human subjects with and without pulmonary conditions and obesity. Key words: (8 maximum) Acoustics, endotracheal tube, intubation, malpositioning, breath sounds, diagnosis.

Public Health Relevance

This project proposes to develop a device to help improve monitoring of endotracheal tubes used in patients with ventilatory failure, airway compromise, and/or during general anesthesia. It will alert health care providers to tube malposition. This wil likely allow improved early correction of tube position, which would result in reduced morbidity, mortality and cost of healthcare.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Small Business Innovation Research Grants (SBIR) - Phase I (R43)
Project #
5R43HL112374-02
Application #
8529607
Study Section
Special Emphasis Panel (ZRG1-SBIB-Q (11))
Program Officer
Harabin, Andrea L
Project Start
2012-08-15
Project End
2014-07-31
Budget Start
2013-08-01
Budget End
2014-07-31
Support Year
2
Fiscal Year
2013
Total Cost
$136,443
Indirect Cost
Name
Biomedical Acoustics Research Company
Department
Type
DUNS #
035035521
City
Evanston
State
IL
Country
United States
Zip Code
60202