Many mosquito-borne viruses are associated with human diseases. Mosquitoes defend themselves against viral infection with an innate immune response. Thus, mosquito-borne viral diseases like West Nile fever, dengue fever, and chikungunya fever are transmitted to humans only when the pathogen is able to overcome these defenses. Despite this, relatively little is known about mosquito innate immunity. We have previously shown that an antiviral response directed by small interfering RNAs (siRNAs) is essential to the survival of mosquito vectors in the presence of an infecting mosquito-borne virus. However, more recently we demonstrated that another class of virus-derived small RNAs, exhibiting many similarities with ping-pong-dependent piwi- interacting RNAs (piRNAs), is also produced in the soma of mosquito vectors. We hypothesize that a non- canonical piRNA pathway present in the soma of vector mosquitoes is acting concurrently with the siRNA pathway to form a coordinated, redundant antiviral defense. In support of this, we characterized multiple mosquito cell lines defective in siRNA-based immunity, and then used these to show that a similar class of ping-pong-dependent viral piRNAs was capable of mounting an antiviral defense that controlled viral infection. In the first aim of this proposal, we will define the biognic pathway of viral piRNA production. In the second aim of the proposal, we will determine the antiviral role of the piRNA pathway in the mosquito soma. At the conclusion of this project, we will have a better understanding of mosquito antiviral immunity and the role of a non-canonical piRNA pathway in restricting virus infection. This information will help address gaps in our knowledge of the epidemiology of mosquito-borne viral diseases and also help to assess possibilities for broad spectrum control strategies that are based on manipulating an evolutionary arms race between viruses and their insect vectors.

Public Health Relevance

Aedinine mosquitoes transmit viruses causing millions of cases of human morbidity and mortality each year. Worldwide efforts at eradication have failed, and increasing globalization is resulting in new infestations in even the wealthiest countries. This project investigates the innate immunity of aedinine vector species, with a focus on understanding factors affecting transmission of mosquito-borne viral diseases.

National Institute of Health (NIH)
National Institute of Allergy and Infectious Diseases (NIAID)
High Priority, Short Term Project Award (R56)
Project #
Application #
Study Section
Vector Biology Study Section (VB)
Program Officer
Costero, Adriana
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Virginia Polytechnic Institute and State University
Schools of Earth Sciences/Natur
United States
Zip Code
Samuel, Glady Hazitha; Wiley, Michael R; Badawi, Atif et al. (2016) Yellow fever virus capsid protein is a potent suppressor of RNA silencing that binds double-stranded RNA. Proc Natl Acad Sci U S A 113:13863-13868
Basu, Sanjay; Aryan, Azadeh; Overcash, Justin M et al. (2015) Silencing of end-joining repair for efficient site-specific gene insertion after TALEN/CRISPR mutagenesis in Aedes aegypti. Proc Natl Acad Sci U S A 112:4038-43
O'Neal, Scott T; Samuel, Glady Hazitha; Adelman, Zach N et al. (2014) Mosquito-borne viruses and suppressors of invertebrate antiviral RNA silencing. Viruses 6:4314-31
Lucas, Keira J; Myles, Kevin M; Raikhel, Alexander S (2013) Small RNAs: a new frontier in mosquito biology. Trends Parasitol 29:295-303