Many mosquito-borne viruses are associated with human diseases. Mosquitoes defend themselves against viral infection with an innate immune response. Thus, mosquito-borne viral diseases like West Nile fever, dengue fever, and chikungunya fever are transmitted to humans only when the pathogen is able to overcome these defenses. Despite this, relatively little is known about mosquito innate immunity. We have previously shown that an antiviral response directed by small interfering RNAs (siRNAs) is essential to the survival of mosquito vectors in the presence of an infecting mosquito-borne virus. However, more recently we demonstrated that another class of virus-derived small RNAs, exhibiting many similarities with ping-pong-dependent piwi- interacting RNAs (piRNAs), is also produced in the soma of mosquito vectors. We hypothesize that a non- canonical piRNA pathway present in the soma of vector mosquitoes is acting concurrently with the siRNA pathway to form a coordinated, redundant antiviral defense. In support of this, we characterized multiple mosquito cell lines defective in siRNA-based immunity, and then used these to show that a similar class of ping-pong-dependent viral piRNAs was capable of mounting an antiviral defense that controlled viral infection. In the first aim of this proposal, we will define the biognic pathway of viral piRNA production. In the second aim of the proposal, we will determine the antiviral role of the piRNA pathway in the mosquito soma. At the conclusion of this project, we will have a better understanding of mosquito antiviral immunity and the role of a non-canonical piRNA pathway in restricting virus infection. This information will help address gaps in our knowledge of the epidemiology of mosquito-borne viral diseases and also help to assess possibilities for broad spectrum control strategies that are based on manipulating an evolutionary arms race between viruses and their insect vectors.

Public Health Relevance

Aedinine mosquitoes transmit viruses causing millions of cases of human morbidity and mortality each year. Worldwide efforts at eradication have failed, and increasing globalization is resulting in new infestations in even the wealthiest countries. This project investigates the innate immunity of aedinine vector species, with a focus on understanding factors affecting transmission of mosquito-borne viral diseases.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
High Priority, Short Term Project Award (R56)
Project #
1R56AI103265-01A1
Application #
8703260
Study Section
Vector Biology Study Section (VB)
Program Officer
Costero, Adriana
Project Start
2013-08-05
Project End
2014-07-31
Budget Start
2013-08-05
Budget End
2014-07-31
Support Year
1
Fiscal Year
2013
Total Cost
$378,350
Indirect Cost
$143,350
Name
Virginia Polytechnic Institute and State University
Department
Zoology
Type
Schools of Earth Sciences/Natur
DUNS #
003137015
City
Blacksburg
State
VA
Country
United States
Zip Code
24061
Samuel, Glady Hazitha; Wiley, Michael R; Badawi, Atif et al. (2016) Yellow fever virus capsid protein is a potent suppressor of RNA silencing that binds double-stranded RNA. Proc Natl Acad Sci U S A 113:13863-13868
Basu, Sanjay; Aryan, Azadeh; Overcash, Justin M et al. (2015) Silencing of end-joining repair for efficient site-specific gene insertion after TALEN/CRISPR mutagenesis in Aedes aegypti. Proc Natl Acad Sci U S A 112:4038-43
O'Neal, Scott T; Samuel, Glady Hazitha; Adelman, Zach N et al. (2014) Mosquito-borne viruses and suppressors of invertebrate antiviral RNA silencing. Viruses 6:4314-31
Lucas, Keira J; Myles, Kevin M; Raikhel, Alexander S (2013) Small RNAs: a new frontier in mosquito biology. Trends Parasitol 29:295-303