This proposal aims to gain a better understanding of sponge-bacterial associations and, in particular, to determine which bacteria are involved and how stable these associations are. Understanding such symbioses is predicted to yield new approaches for the aquaculture of pharmacologically-active sponges or the cultivation of the producing bacterial strains. Such methods would have enormous potential to solve the supply problem of pharmaceutically-active marine natural products. We intend to use molecular techniques such as Denaturing Gradient Gel Electrophoresis (DGGE) to monitor the microbial communities in sponges as well as to apply state-of-the-art chemical analysis in order to determine the corresponding secondary metabolite profiles. Furthermore, we propose to adopt the innovative technique of Diffusion Growth Chambers (DGCs) to the cultivation of previously """"""""unculturable"""""""" sponge bacteria. DGCs are essentially semi-permeable membranes filled with homogenized sponge tissue and agar. This immobilizes bacteria inside the polymer membranes, while simultaneously exposing bacteria to the """"""""sponge chemistry"""""""". These techniques will allow us to examine whether: 1) changes in sponge secondary metabolites correlate with changes in sponge-associated microbial communities;2) DGCs allow culturing of previously """"""""unculturable"""""""" sponge bacteria;and 3) symbiotic sponge bacteria or sponges themselves yield new, interesting, pharmacologically-active compounds. In addition to new insights on sponge-bacterial symbiosis (e.g. are; sponge bacteria generalists or specialists?), we will create a library of potentially unique bacterial strains isolated from sponges with the new DGC technique. Isolated sponge bacteria will be grown out and extracted, and extracts screened for possible new anticancer or antiinfectant metabolites. Activity in either screen will be followed by the isolation and structure elucidation of the active secondary metabolites. To effectively treat diseases such as cancer or tuberculosis (caused by multi-drug-resistant bacteria), it is important to develop new drugs. Although several potential drug candidates have been isolated from marine organisms, further development is often hampered by a supply problem.
Our research aims to identify new drug candidates from microbial sources and simultaneously develop new culturing techniques to address the supply problem

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Minority Biomedical Research Support - MBRS (S06)
Project #
5S06GM044796-19
Application #
8015286
Study Section
Minority Programs Review Committee (MPRC)
Project Start
Project End
Budget Start
2010-01-01
Budget End
2010-12-31
Support Year
19
Fiscal Year
2010
Total Cost
$98,473
Indirect Cost
Name
University of Guam
Department
Type
DUNS #
779908151
City
Mangilao
State
GU
Country
United States
Zip Code
96923
Steinert, Georg; Taylor, Michael W; Schupp, Peter J (2015) Diversity of Actinobacteria Associated with the Marine Ascidian Eudistoma toealensis. Mar Biotechnol (NY) 17:377-85
Wright, Anthony D; Schupp, Peter J; Schror, Jan-Philipp et al. (2012) Twilight zone sponges from Guam yield theonellin isocyanate and psammaplysins I and J. J Nat Prod 75:502-6
Rohde, Sven; Gochfeld, Deborah J; Ankisetty, Sridevi et al. (2012) Spatial variability in secondary metabolites of the indo-pacific sponge Stylissa massa. J Chem Ecol 38:463-75
Schmitt, Susanne; Tsai, Peter; Bell, James et al. (2012) Assessing the complex sponge microbiota: core, variable and species-specific bacterial communities in marine sponges. ISME J 6:564-76
Rohde, Sven; Schupp, Peter J (2011) Allocation of chemical and structural defenses in the sponge Melophlus sarasinorum. J Exp Mar Bio Ecol 399:76-83
Sharp, Koty H; Ritchie, Kim B; Schupp, Peter J et al. (2010) Bacterial acquisition in juveniles of several broadcast spawning coral species. PLoS One 5:e10898
Gaither, Michelle R; Rowan, Rob (2010) Zooxanthellar symbiosis in planula larvae of the coral Pocillopora damicornis. J Exp Mar Bio Ecol 386:45-53
Schupp, Peter J; Kohlert-Schupp, Claudia; Whitefield, Susanna et al. (2009) Cancer chemopreventive and anticancer evaluation of extracts and fractions from marine macro- and microorganisms collected from Twilight Zone waters around Guam. Nat Prod Commun 4:1717-28
Kitamura, Makoto; Schupp, Peter J; Nakano, Yoshikatsu et al. (2009) Luminaolide, a novel metamorphosis-enhancing macrodiolide for scleractinian coral larvae from crustose coralline algae. Tetrahedron Lett 50:6606
Manzo, Emiliano; Ciavatta, M Letizia; Melck, Dominique et al. (2009) Aromatic cyclic peroxides and related keto-compounds from the Plakortis sp. component of a sponge consortium. J Nat Prod 72:1547-51

Showing the most recent 10 out of 27 publications