In response to the expanding need for advanced live cell imaging capabilities, the School of Veterinary Medicine established an Imaging Core facility, which came online in the summer of 2008. With the heavy involvement of several pioneer labs, we have implemented a range of cutting edge applications and in less than one year have developed a dedicated and broad user base with 12 NIH funded labs actively generating data from the facility. In addition, 7 labs are in the consultation and experimental design stage, indicating a rapidly expanding interest in utilizing the core facility. Expanding utilization of the core has been greatly facilitated by the expertise of our core director, Dr. Lingli Zhang, who has been instrumental in developing and implementing a range of new applications for our user. As a group we have developed an enormous amount of collective expertise, including real-time imaging of pathogen infection and immune responses in the brain, intestine, skin, and secondary lymphoid organs, FRET based approaches to track the localization, interactions, and activity of signaling molecules in response to receptor stimulation, photo-activation to generate signaling intermediates instantaneously in situ, and live imaging of calcium and mitochondrial function. Although the core has been fully operational for a relatively short time, data generated have contributed to an Immunity paper, and results of other studies have been submitted for publication or are in final stages of preparation. The experimental needs of our user group continuously drives us to expand our capability and each of the hardware components requested in this proposal was chosen to address specific current needs, and also to anticipate future needs, with the ultimate goal of improving our 2 photon/spectral imaging capability. Funds requested will therefore be used for upgraded hardware that will enhance the capability of our core confocal/2 photon spectral imaging system in 3 general ways;1) increase the temporal resolution, spatial coverage, and detection sensitivity of the microscope, 2) provide capability for drug application and adequate environmental control for long term real time imaging of living tissues and cells, and 3) expand the overall capability of the instrument to perform Forster resonance energy transfer (FRET) and fluorescence lifetime imaging.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biomedical Research Support Shared Instrumentation Grants (S10)
Project #
1S10RR027128-01
Application #
7794472
Study Section
Special Emphasis Panel (ZRG1-IMST-A (30))
Program Officer
Birken, Steven
Project Start
2010-08-01
Project End
2011-07-31
Budget Start
2010-08-01
Budget End
2011-07-31
Support Year
1
Fiscal Year
2010
Total Cost
$496,332
Indirect Cost
Name
University of Pennsylvania
Department
Pathology
Type
Schools of Veterinary Medicine
DUNS #
042250712
City
Philadelphia
State
PA
Country
United States
Zip Code
19104
Guziewicz, Karina E; Cideciyan, Artur V; Beltran, William A et al. (2018) BEST1 gene therapy corrects a diffuse retina-wide microdetachment modulated by light exposure. Proc Natl Acad Sci U S A 115:E2839-E2848
Decker, Rebekah S; Um, Hyo-Bin; Dyment, Nathaniel A et al. (2017) Cell origin, volume and arrangement are drivers of articular cartilage formation, morphogenesis and response to injury in mouse limbs. Dev Biol 426:56-68
Kim, Dongyeop; Sengupta, Arjun; Niepa, Tagbo H R et al. (2017) Candida albicans stimulates Streptococcus mutans microcolony development via cross-kingdom biofilm-derived metabolites. Sci Rep 7:41332
Xu, Jie; Sun, Yan; Li, Yize et al. (2017) Replication defective viral genomes exploit a cellular pro-survival mechanism to establish paramyxovirus persistence. Nat Commun 8:799
Glatman Zaretsky, Arielle; Konradt, Christoph; Dépis, Fabien et al. (2017) T Regulatory Cells Support Plasma Cell Populations in the Bone Marrow. Cell Rep 18:1906-1916
Zwack, Erin E; Feeley, Eric M; Burton, Amanda R et al. (2017) Guanylate Binding Proteins Regulate Inflammasome Activation in Response to Hyperinjected Yersinia Translocon Components. Infect Immun 85:
Han, Ziying; Sagum, Cari A; Takizawa, Fumio et al. (2017) Ubiquitin Ligase WWP1 Interacts with Ebola Virus VP40 To Regulate Egress. J Virol 91:
Han, Ziying; Bart, Stephen M; Ruthel, Gordon et al. (2016) Ebola virus mediated infectivity is restricted in canine and feline cells. Vet Microbiol 182:102-7
Gao, Lizeng; Liu, Yuan; Kim, Dongyeop et al. (2016) Nanocatalysts promote Streptococcus mutans biofilm matrix degradation and enhance bacterial killing to suppress dental caries in vivo. Biomaterials 101:272-84
He, Jinzhi; Hwang, Geelsu; Liu, Yuan et al. (2016) l-Arginine Modifies the Exopolysaccharide Matrix and Thwarts Streptococcus mutans Outgrowth within Mixed-Species Oral Biofilms. J Bacteriol 198:2651-61

Showing the most recent 10 out of 17 publications