The goal of this proposal is to obtain funding for a 15 Tesla Bruker SolariX hybrid FTICR mass spectrometer to be housed in the UW-Madison Pharmacy MS Facility. This new instrument will offer several unique features: (1) Ultra-high resolution and high mass accuracy MS, MS/MS, and MSn capabilities;(2) Multiple ionization sources;(3) Enhanced de novo sequencing of peptides with multiple fragmentation techniques;(4) High resolution tissue imaging;(5) Quantitation based on isotopic labeling strategies;and (6) Ability to analyze small molecules as well as full-length proteins. This new instrument will provide advanced MS capabilities to support the research of 28 highly productive NIH-funded investigators with 49 ongoing projects. The use of high resolution MS and tandem MS will help to address multiple levels of human health-related research including, (a) understanding of fundamental biological and disease related processes (neuropeptides involved in feeding stimuli, Dr. Li;neuropeptides and proteins involved in signaling in a nematode model, Dr. Stretton;plasma membrane proteins responsible for maintenance of the blood-brain barrier, Dr. Shusta;proteomic changes in monocytes in response to biomaterials, Dr. Kao;environmental toxicological responses Drs. Elfarra, and Heideman;protein signaling complexes in asthma, Dr. Malter;protein-protein interactions in the visual system Dr. Ruoho;protein folding and biosynthesis, Dr. Cavagnero;prostate development, stem cell maintenance and tumor growth, Drs. Peterson, Bushman and Marker;signaling events in limb development, Dr. Sun;lipids and their role in sleep regulation, Dr. Yin), (b) discovery of biomarkers (for neurodegenerative diseases, Drs. Messing and Li;differences in the brain proteome in mouse models of mental retardation, Dr. Malter;changes in astrocyte secretome associated with neuronal protection, Dr. Johnson), (c) posttranslational modification mapping of proteins in disease process (modifications involved in Alzheimer's disease, Drs. Murphy and Wang;breast cancer, Dr. Xu;leukemia, Dr. Collier), (d) discovery/development of novel natural product pharmaceuticals (validate intermediates and products in the total synthesis of natural products, Dr. Hsung;identify novel polyketides and investigate enzymatic mechanisms of polyketide synthesis, Dr. Shen;structural characterization of glycorandomized pharmaceuticals, Dr. Thorson;structural elucidation of new natural products, Dr. Bugni), (e) improvement of drug delivery (characterization of novel biopolymers for drug delivery, Dr. Kwon;characterization of new fluorine-containing compounds for delivery of anesthetics, Dr. Mecozzi), and (f) clinical pharmaceutical analysis (evaluation of pharmacological profiles of anesthetics, Dr. Pearce;investigation of drug metabolism in clinical samples, Drs. Kolesar, Bailey, and Wilding). Progress on this broad array of projects will be catalyzed by the effective usage of the new instrument through close cooperation among the user groups, Dr. Li, a highly productive faculty member with more than 17 years of experience in biological mass spectrometry, and Dr. Scarlett, the UW-Madison Pharmacy-MS Facility Director.

Public Health Relevance

Successful acquisition of a high resolution Bruker SolariX Hybrid FTICR mass spectrometer will have significant and broad impact on a wide array of biomedical research projects conducted on the health sciences campus at the University of Wisconsin-Madison (UWM). This cutting-edge instrument will provide advanced mass spectrometric capabilities that facilitate deciphering molecular details involved in a broad spectrum of biological processes as well as disease progression, diagnosis and treatment. This instrumentation enhancement will support 30 major and minor users with 49 funded federal grants or contracts, and will accelerate the pace of ongoing research in 13 departments or divisions within five colleges or schools and two centers at UWM as well as being available to the broader scientific community in Madison and the State of Wisconsin.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biomedical Research Support Shared Instrumentation Grants (S10)
Project #
1S10RR029531-01
Application #
7839550
Study Section
Special Emphasis Panel (ZRG1-BCMB-K (30))
Program Officer
Levy, Abraham
Project Start
2011-05-15
Project End
2013-04-30
Budget Start
2011-05-15
Budget End
2013-04-30
Support Year
1
Fiscal Year
2011
Total Cost
$2,070,000
Indirect Cost
Name
University of Wisconsin Madison
Department
Pharmacology
Type
Schools of Pharmacy
DUNS #
161202122
City
Madison
State
WI
Country
United States
Zip Code
53715
Bratburd, Jennifer R; Keller, Caitlin; Vivas, Eugenio et al. (2018) Gut Microbial and Metabolic Responses to Salmonella enterica Serovar Typhimurium and Candida albicans. MBio 9:
Ma, Fengfei; Liu, Fabao; Xu, Wei et al. (2018) Surfactant and Chaotropic Agent Assisted Sequential Extraction/On-Pellet Digestion (SCAD) for Enhanced Proteomics. J Proteome Res 17:2744-2754
Chen, Zhengwei; Yu, Qing; Hao, Ling et al. (2018) Site-specific characterization and quantitation of N-glycopeptides in PKM2 knockout breast cancer cells using DiLeu isobaric tags enabled by electron-transfer/higher-energy collision dissociation (EThcD). Analyst 143:2508-2519
Yang, Ning; Anapindi, Krishna D B; Rubakhin, Stanislav S et al. (2018) Neuropeptidomics of the Rat Habenular Nuclei. J Proteome Res 17:1463-1473
Cao, Qinjingwen; Ouyang, Chuanzi; Zhong, Xuefei et al. (2018) Profiling of small molecule metabolites and neurotransmitters in crustacean hemolymph and neuronal tissues using reversed-phase LC-MS/MS. Electrophoresis 39:1241-1248
Hao, Ling; Wang, Jingxin; Page, David et al. (2018) Comparative Evaluation of MS-based Metabolomics Software and Its Application to Preclinical Alzheimer's Disease. Sci Rep 8:9291
Frost, Dustin C; Rust, Clayton J; Robinson, RenĂ£ A S et al. (2018) Increased N,N-Dimethyl Leucine Isobaric Tag Multiplexing by a Combined Precursor Isotopic Labeling and Isobaric Tagging Approach. Anal Chem 90:10664-10669
Chen, Bingming; Zhong, Xuefei; Feng, Yu et al. (2018) Targeted MultiNotch MS3 Approach for Relative Quantification of N-Glycans Using Multiplexed Carbonyl-Reactive Isobaric Tags. Anal Chem 90:1129-1135
Wilking-Busch, Melissa J; Ndiaye, Mary A; Liu, Xiaoqi et al. (2018) RNA interference-mediated knockdown of SIRT1 and/or SIRT2 in melanoma: Identification of downstream targets by large-scale proteomics analysis. J Proteomics 170:99-109
Zhang, Xingmin; Jiang, Shan; Mitok, Kelly A et al. (2017) BAIAP3, a C2 domain-containing Munc13 protein, controls the fate of dense-core vesicles in neuroendocrine cells. J Cell Biol 216:2151-2166

Showing the most recent 10 out of 54 publications