This renewal application is for a T32 training grant which provides support for five predoctoral and three postdoctoral trainees in basic alcohol research at Wake Forest School of Medicine. The objectives of the training program are to 1) provide multi-disciplinary training in the neurobiology of alcohol abuse and addiction and 2) produce independent, productive scientists for the alcohol research community. Our rationale for the proposed training arises from our diverse training faculty - a group of well-funded alcohol investigators with solid expertise in basic, clinical, and human-population research - who have been successful for almost twenty years in training young scientists. Our environment is highly collaborative and multidisciplinary such that our trainees gather the necessary skills to become independent investigators and to operate within interdisciplinary teams that will increasingly characterize the future of biomedical research. The alcohol research that characterizes our training environment is also highly translational. First, virtually all of our training labs employand publish in alcohol self-administration;and this has characterized the training program from its inception. The training program also spans experimental model systems from mice and rats, through monkeys and individual humans, to human populations. And many of our training faculty employ overlapping experimental approaches, examine some of the same end points, and/or employ the some of the same behavioral models across multiple species. Our training design therefore consists of both rigorous didactic instruction as well as intensive laboratory-based research. It is augmented by a robust curriculum in career development, including teaching and grant- and manuscript-writing courses, and ethics. There are multiple opportunities for students and postdoctoral fellows to hone presentation skills including journal clubs, data clubs, and required research seminar presentations at least twice or more each year. As a condition for reappointment to the training program, we require our all trainees apply for individual NRSAs (or independent private support) during their training and to publish in peer-reviewed journals. This requirement helps sharpen grant writing skills that are critical in today's research environment. We also attempt to limit predoctoral trainees to less than three years of support on the training grant. This time-limit ensures that the training grant provides support to the best, brightest, and most productive students and fellows at Wake Forest School of Medicine. Our program also benefits from distinct school resources that include a Translational Science Institute which offers courses in translational research, a nationally-recognized primate center with several different populations of monkeys including a fully pedigreed and genotyped vervet colony, and state-of-the-art imaging facilities that can accommodate humans, non-human primates, and rodents. Finally, we partner with resident psychiatrists and psychologists to give our students clinical exposure to current and long-abstinent patients. This enhances their understanding of alcohol abuse disorders and grounds their research in the real world.

Public Health Relevance

The incidence of alcohol abuse and alcoholism remain high in the United States. This training program will supply the United States with highly trained alcohol researchers who are poised to address the serious problems presented by alcohol abuse disorders.

National Institute of Health (NIH)
National Institute on Alcohol Abuse and Alcoholism (NIAAA)
Institutional National Research Service Award (T32)
Project #
Application #
Study Section
Special Emphasis Panel (ZAA1)
Program Officer
Grandison, Lindsey
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Wake Forest University Health Sciences
Schools of Medicine
United States
Zip Code
Siciliano, Cody A; Calipari, Erin S; Yorgason, Jordan T et al. (2016) Chronic ethanol self-administration in macaques shifts dopamine feedback inhibition to predominantly D2 receptors in nucleus accumbens core. Drug Alcohol Depend 158:159-63
Fordahl, Steve C; Locke, Jason L; Jones, Sara R (2016) High fat diet augments amphetamine sensitization in mice: Role of feeding pattern, obesity, and dopamine terminal changes. Neuropharmacology 109:170-82
Rose, Jamie H; Karkhanis, Anushree N; Chen, Rong et al. (2016) Supersensitive Kappa Opioid Receptors Promotes Ethanol Withdrawal-Related Behaviors and Reduce Dopamine Signaling in the Nucleus Accumbens. Int J Neuropsychopharmacol 19:
Siciliano, Cody A; Calipari, Erin S; Yorgason, Jordan T et al. (2016) Increased presynaptic regulation of dopamine neurotransmission in the nucleus accumbens core following chronic ethanol self-administration in female macaques. Psychopharmacology (Berl) 233:1435-43
Karkhanis, Anushree N; Beveridge, Thomas J R; Blough, Bruce E et al. (2016) The individual and combined effects of phenmetrazine and mgluR2/3 agonist LY379268 on the motivation to self-administer cocaine. Drug Alcohol Depend 166:51-60
Robinson, Stacey L; Alexander, Nancy J; Bluett, Rebecca J et al. (2016) Acute and chronic ethanol exposure differentially regulate CB1 receptor function at glutamatergic synapses in the rat basolateral amygdala. Neuropharmacology 108:474-84
McGinnis, Molly M; Siciliano, Cody A; Jones, Sara R (2016) Dopamine D3 autoreceptor inhibition enhances cocaine potency at the dopamine transporter. J Neurochem 138:821-9
Siciliano, Cody A; Fordahl, Steve C; Jones, Sara R (2016) Cocaine Self-Administration Produces Long-Lasting Alterations in Dopamine Transporter Responses to Cocaine. J Neurosci 36:7807-16
Gioia, Dominic A; Alexander, Nancy J; McCool, Brian A (2016) Differential Expression of Munc13-2 Produces Unique Synaptic Phenotypes in the Basolateral Amygdala of C57BL/6J and DBA/2J Mice. J Neurosci 36:10964-10977
Karkhanis, Anushree N; Huggins, Kimberly N; Rose, Jamie H et al. (2016) Switch from excitatory to inhibitory actions of ethanol on dopamine levels after chronic exposure: Role of kappa opioid receptors. Neuropharmacology 110:190-7

Showing the most recent 10 out of 108 publications