The training program will continue to mentor and educate young investigators to conduct research in age- related neurodegenerative diseases so that they can develop into independent investigators who will pursue careers to further our understanding of the etiology, pathogenesis, diagnosis and treatment of these diseases. The trainers are: (a) predoctoral PhD and MD/PhD students in the Neurosciences and Pharmacological Sciences;(b) PhD scientists with prior training in the neurosciences, pharmacology, psychology, molecular biology and biochemistry;(c) physicians with prior training in neurology, neuropathology, psychiatry and gerontology. The trainees will be given a solid background in neuroscience and related disciplines to prepare them for a career in research on neurodegenerative diseases. This is a research training program that includes experience in many diverse techniques, methods and approaches to age-related neurodegenerative disease research in the setting of a research intense academic medical center and university with a highly interactive group of trainers. Notably, Penn has an extensive didactic program in the neurosciences, pharmacology and other basis sciences that can be individually tailored to the needs of each trainee as a supplement to the core research training. Each trainee will undertake an independent project that will provide experience in the design and analysis of experiments and in the presentation and publication of results. Weekly research seminars provide constant interchange between trainees and trainers. Predoctoral students are enrolled in the PhD program in Neuroscience, Pharmacological Sciences or Cell and Molecular Biology and they progress through a thorough didactic graduate level program prior to undertaking a thesis project. The training program includes 21 individual trainers with complementary expertise in research on neurodegenerative diseases of the elderly. Each trainee will select a mentor/trainer and laboratory for his/her primary research project, although joint supervision of a trainee by more than one trainer is encouraged. Trainees also have free access to other trainers for advice, technical help and collaboration. Physician trainees also can acquire training in patient oriented research from trainers and consulting faculty with expertise in this increasingly important facet of aging research.

National Institute of Health (NIH)
National Institute on Aging (NIA)
Institutional National Research Service Award (T32)
Project #
Application #
Study Section
Special Emphasis Panel (ZAG1-ZIJ-9 (J1))
Program Officer
Refolo, Lorenzo
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Pennsylvania
Schools of Medicine
United States
Zip Code
Seither, Katelyn M; McMahon, Heather A; Singh, Nikita et al. (2014) Specific aromatic foldamers potently inhibit spontaneous and seeded A?42 and A?43 fibril assembly. Biochem J 464:85-98
McMillan, Corey T; Toledo, Jon B; Avants, Brian B et al. (2014) Genetic and neuroanatomic associations in sporadic frontotemporal lobar degeneration. Neurobiol Aging 35:1473-82
Gill, Alexander J; Kovacsics, Colleen E; Cross, Stephanie A et al. (2014) Heme oxygenase-1 deficiency accompanies neuropathogenesis of HIV-associated neurocognitive disorders. J Clin Invest 124:4459-72
Maday, Sandra; Twelvetrees, Alison E; Moughamian, Armen J et al. (2014) Axonal transport: cargo-specific mechanisms of motility and regulation. Neuron 84:292-309
Liu, Elaine Y; Russ, Jenny; Wu, Kathryn et al. (2014) C9orf72 hypermethylation protects against repeat expansion-associated pathology in ALS/FTD. Acta Neuropathol 128:525-41
Brettschneider, Johannes; Del Tredici, Kelly; Irwin, David J et al. (2014) Sequential distribution of pTDP-43 pathology in behavioral variant frontotemporal dementia (bvFTD). Acta Neuropathol 127:423-39
Irwin, David J; Trojanowski, John Q; Grossman, Murray (2013) Cerebrospinal fluid biomarkers for differentiation of frontotemporal lobar degeneration from Alzheimer's disease. Front Aging Neurosci 5:6
Busch, Johanna I; Martinez-Lage, Maria; Ashbridge, Emily et al. (2013) Expression of TMEM106B, the frontotemporal lobar degeneration-associated protein, in normal and diseased human brain. Acta Neuropathol Commun 1:36
Lazarus, Jacob E; Moughamian, Armen J; Tokito, Mariko K et al. (2013) Dynactin subunit p150(Glued) is a neuron-specific anti-catastrophe factor. PLoS Biol 11:e1001611
Ibrahim, Fadia; Maragkakis, Manolis; Alexiou, Panagiotis et al. (2013) Identification of in vivo, conserved, TAF15 RNA binding sites reveals the impact of TAF15 on the neuronal transcriptome. Cell Rep 3:301-8

Showing the most recent 10 out of 88 publications